Glossaire

« Utiliser le bon mot, la bonne notion, le bon concept, avec la définition la plus couramment acceptée, ou mieux avec la définition la mieux acceptée et comprise relève parfois de l’exploit, … »
                                                     
 Patrick Triplet.

> Par cette citation, je souhaite rendre un vibrant hommage au travail de Titan réalisé sur plus de dix ans par ce biologiste, docteur en écologie dont l’ouvrage "Dictionnaire encyclopédique de la diversité biologique et de la conservation de la nature" constitue la source de très nombreuses définitions présentes dans ce glossaire. Utiliser un langage dont les mots recouvrent des concepts clairement définis permet à chacun d’aborder et de comprendre des domaines qui ne sont pas forcément de sa compétence.

> Ce glossaire qui regroupe plus de 6 000 définitions accompagnées de leur traduction anglaise est là pour vous y aider. Il couvre les domaines complémentaires que sont la Géographie, l’Écologie et l’Économie, sans oublier de faire un petit détour par la Finance qui régit dans l’ombre une bonne part de notre existence.

> Par lui-même, de définition en définition, ce glossaire vous invite à explorer l’univers riche de la conservation des milieux naturels, d’en comprendre les mécanismes et les enjeux.

À toutes et tous, nous souhaitons : “Excellente lecture et bon voyage”.

Glossaire

Rechercher par terme du glossaire

Glossaires

Terme Définition
I2EC

♦ Acronymme pour : "Indice d’évaluation de l’endofaune côtière".

♦ L’analyse des peuplements vivant dans les sédiments est indispensable pour l’évaluation des conditions environnementales dans les milieux marins et estuariens. Cette analyse est fondée sur la réponse de ces peuplements face aux changements naturels ou induits par l’homme. L’emploi d’un indice permet de résumer la qualité biologique en une valeur unique représentative d’une somme importante d’informations écologiques.

> La composition et la structure des peuplements des fonds meubles sont utilisées pour caractériser les conditions du milieu et estimer d’éventuels impacts sur ce benthos.
Les méthodes d’évaluation sont nécessairement quantitatives et l’I2EC se fonde sur la distinction au sein de la macrofaune de cinq groupes d’espèces ayant en commun une sensibilité similaire vis-à-vis de la matière organique en excès et face au déficit éventuel d’oxygène résultant de la dégradation. Chaque espèce est ainsi affectée à un groupe écologique en fonction de sa sensibilité au gradient croissant de stress environnemental. Cette méthode évalue les impacts sur le benthos des excès de matières organiques et de tout type de perturbation.

> Le modèle d’évaluation de l’I2EC reconnaît quatre grandes étapes depuis l’état normal du peuplement (I2EC = 0) où les espèces sensibles dominent jusqu’au stade de pollution maximale (I2EC = 6). Ce dernier est caractérisé par quelques espèces opportunistes de premier ordre, qui atteignent des densités exceptionnelles (100 000 individus par m²) à la surface des sédiments réduits. Entre ces quatre grandes étapes existent des étapes de transition ou écotones, qui correspondent aux chiffres impairs 1, 3 et 5. Ces écotones sont définis en premier lieu par l’effondrement des paramètres représentant la richesse spécifique et l’abondance des peuplements ou, au contraire, par l’explosion d’une espèce indifférente, favorisée par le manque de compétition.

Groupes écologiques et signification des indices en matière de santé des écosystèmes

───────────────────────────────────
  Groupes                                 1                     3                     5
───────────────────────────────────
          I                   > 40%        20-40%        < 20%             -
         III                 20-40%      > 40%        20-40%        < 20 %
         IV                  < 20%         < 20%         > 40%          20-40%
         V                          -                     -                  +                 > 40%
État de santé   Normal     Enrichi     Dégradé    Fortement
    du milieu                                                                          dégradé
───────────────────────────────────

♦ Équivalent étranger : Index for evaluation of the coastal endofauna (I2EC).

I2M2

♦ Acronyme pour : "Indice invertébrés multi-métrique"
♦ Le calcul de cet indice repose d’une part sur la mise en oeuvre d’un protocole d’échantillonnage fondé sur la réalisation de trois prélèvements (B1, B2 et B3) réunissant chacun quatre prélèvements unitaires, et d’autre part sur un protocole de traitement des échantillons prélevés.

> La construction de l’I2M2 a pris en considération 10 catégories de pressions chimiques (micropolluants, matières phosphorées, etc.) et 7 catégories de pressions hydromorphologiques (instabilité hydrologique, colmatage, etc.). Cet indice permet un ratio de qualité écologique (EQR) qui correspond à l’écart entre la situation observée et la situation de référence.
Pour sa construction, plus de 2 500 métriques taxonomiques décrivant les communautés macrobenthiques ont été testées en fonction de différents critères statistiques comme par exemple le caractère positif ou négatif de la réponse des différentes métriques à une catégorie de pression donnée ou le calcul de coefficients de variation. Parmi ces 2 500 métriques, seulement cinq ont été retenues. Ces cinq métriques complémentaires apportent des informations sur la communauté en place, il s’agit de l’Average Score Per Taxon (ASPT), la diversité de Shannon (H), la richesse taxonomique (TAX) (selon le niveau requis dans la norme XP T90-388), la fréquence relative des organismes polyvoltins (PS) et la fréquence relative des organismes ovovivipares (OS).
Les trois premières (ASPT, H’ et TAX) sont couramment utilisées dans d’autres indices européens prouvant ainsi leur caractère bio-indicateur. Les deux dernières (PS et OS) sont des métriques innovantes montrant l’intérêt de développer une approche plus fonctionnelle.

* L’Average Score Per Taxon (ASPT), calculé sur les habitats dominants (phases B et C), correspond au niveau de polluo-sensibilité moyen de l’assemblage des macroinvertébrés benthiques (au moins un individu) et varie de 0 à 10.

* L’indice de diversité de Shannon H' Shannon, 1948) est calculé sur les habitats les plus biogènes (phases A et B) avec la formule suivante :

𝐻ʹ = −∑(𝑃𝑖𝑛𝑖=1 × ln𝑃𝑖)

Pi correspond à la proportion de l’effectif du taxon i par rapport à l’effectif total des n taxons.

L’indice de diversité de Shannon est un indice de diversité spécifiqueest un indice de diversité spécifique (taxons identifiés à l’espèce), or le niveau d’identification requis des taxons dans le calcul de l’I2M2 est plus faible, ce qui peut entrainer une part d’incertitude sur les valeurs de l’indice. Guerold a montré que le changement de niveau d’identification entre espèce et genre/genre-famille conduisait à une sous-estimation de la valeur H’. Cependant, il est à noter que lors de cette étude tous les taxons n’ont pas été identifiés à l’espèce.

* La richesse taxonomique (TAX) correspond au nombre de taxons identifiés au niveau systématique requis par la norme AFNOR XP T90-388 au moins représenté par un individu dans l’ensemble du prélèvement (phases A, B et C).

* La fréquence relative des taxons polyvoltins (PS) (i.e. avec au moins deux générations successives au cours d’une année) est calculée sur l’ensemble des listes faunistiques (phases A, B et C). Cette métrique révèle une stabilité ou instabilité stationnelle. En effet, lorsqu’un milieu connait une dégradation, les espèces à cycle long ont tendance à disparaître (espèces monovoltines), tandis que les espèces à cycle courts augmentent (espèces polyvoltines).

* La fréquence relative des taxons ovovivipares (OS) (i.e. dont la totalité du développement embryonnaire s’effectue dans l’abdomen de la femelle, l’éclosion des oeufs suivant immédiatement leur expulsion dans le milieu aquatique) est calculée sur l’ensemble des listes faunistiques (phases A, B et C). Cette métrique informe sur les dégradations de l’habitat. Les fréquences relatives des taxons polyvoltins et ovovivipares sont calculées sur l’ensemble du prélèvement (phases A, B et C) selon la formule suivante (Usseglio-Polatera et al., 2000) :

M = (∑i miSi x ln(qi + 1) ) / ∑ ln(qi + 1) Si

  où   • M  correspond à la fréquence relative d’utilisation de la modalité considérée sur l’ensemble du prélèvement
         • S  le nombre total de taxons,
         • mi la fréquence relative d'utilisation de la modalité m du trait biologique considéré pour le taxon i
         • qi l’abondance du taxon i dans l’assemblage faunistique considéré.

> Grâce à leur combinaison et leur pondération par des coefficients de discrimination, elles permettent d’intégrer plusieurs types de pressions physico-chimiques et morphologiques. Ainsi, sont calculés 17 sous-indices pour chacune des catégories de pression associée à la qualité de l’eau. La note de l’indice I2M2 correspond à la moyenne arithmétique de ces 17 sous-indices et est comprise entre 0 et 1. Pour conclure, l’I2M2 est un nouvel indice qui permet le calcul d’écart à la référence ; il prend en compte la typologie des cours d’eau mais également les abondances, la diversité et le ratio entre taxons sensibles et taxons résistants et montre une sensibilité aux 17 catégories de pression prises en compte dans l’élaboration de l’indice et représentatives des principales pressions subies par les milieux aquatiques. Karr et Chu (1997) ont déjà pu démontrer que les indices multimétriques apportaient des évaluations plus robustes que les indices monométriques. Ainsi, ce nouvel indice, l’I2M2, donne une évaluation plus efficace, plus robuste et plus en adéquation avec les critères de la DCE et devient comparable aux autres méthodes européennes.

> Par comparaison avec l’IBGN, la mise au point de l’I2M2 permet notamment :

  • La prise en compte de 10 catégories de pression en relation avec la qualité physico-chimique de l’eau : matière organique, matières azotées (hors nitrates), nitrates, matières phosphorées, matières en suspension, acidification, métaux, pesticides, hydrocarbures aromatiques polycycliques, micropolluants organiques
  • La prise en compte de sept catégories de pression en relation avec la qualité de l’hydromorphologie et l’utilisation de l’espace (voies de communication dans le lit mineur, ripisylve, intensité d’urbanisation, risque de colmatage, etc.)
  • L’expression des métriques en EQR, afin de permettre (i) la prise en compte de la typologie et (ii) une comparaison directe des valeurs de métriques pour tous les cours d’eau relevant d’un protocole normalisé
  • La prise en compte de plusieurs échelles de calcul pour les métriques candidates à l’intégration dans l’I2M2 (B1, B2, B3, B1+B2, B2+B3 et B1+B2+B3)
  • La sélection des métriques les plus pertinentes à l’intégration dans l’indice, notamment sur la base de (i) leur caractère généraliste (réponse significative à au moins sept des 10 catégories de pression liées à la qualité de l’eau et à au moins à cinq des sept catégories de pression liées à l’hydromorphologie ou au type d’occupation de l’espace), (ii) leur efficacité de discrimination des peuplements soumis à perturbation, (iii) leur stabilité en conditions de référence et (iv) leur non redondance au sein de la sélection finale de métriques.

> L’indice I2M2 apparaît comme beaucoup plus sensible que l’IBGN aux perturbations  anthropiques et présente une efficacité de discrimination des situations perturbées beaucoup plus importante.

♦ Équivalent étranger : Invertebrate multi-metric index (I2M2).

IAM

♦ Acronyme pour : "Indice d’attractivité morphodynamique".
♦  Indice permettant de chiffrer globalement les capacités piscicoles associées à la structure physique d’un cours d’eau. Un premier niveau d’analyse consiste à comparer la représentation surfacique des différentes classes des trois composantes de l’habitat. Dans un deuxième temps, les cartes permettent de visualiser l’intérêt ou les lacunes de chacune des composantes de la mosaïque d’habitats résultant de leur combinaison.

> L’indice IAM est calculé ainsi :

IAM = [ Σ(S* Attract.(subst.i)) ] * Var (subst.) * Var (h.e) * Var (v)

   où  • Var : Variété (nombre de classes)
           • v : vitesse
           • h.e : hauteur d’eau
           • subst. : substrats/supports
           • Si : Surface relative du substrat / support i.
           • Attract. : attractivité du substrat

Hiérarchisation de l’attractivité des différents substrats.

───────────────────────────────────
Code                          Substrat                                      Attractivité
───────────────────────────────────

 BRA    branchages, grosses racines immergés     100
 BER    sous-berges                                                                90
 HYI      hydrophytes immergés                                          80
 AFF     sources, résurgences, affluents                       70
 BLO     blocs avec caches                                                    60
 GAL     galets                                                                              50
 HEL     hélophytes                                                                     40
 CHV    chevelus racinaires, végétations rases           40
 BLO     blocs sans anfractuosités                                      30
 GGR    galets et graviers mélangés                                     25
 GRA    graviers                                                                          20
 GLS     galets pavés (sans anfractuosité)                       10
 LIT       litières organiques                                                      10
 SAB     sables                                                                                  8
 FIN      éléments fins, limons, vases                                     4
 DAL     dalles, surfaces indurées (sans cache)              1
───────────────────────────────────

♦ Équivalent étranger : Morphodynamic attractiveness index.

IBA

♦ Acronyme pour : "Important Bird Areas".
♦ Voir : Zone importante pour les oiseaux.

IBGA

♦ Acronyme pour : "Indice biologique global adapté (aux grandes rivières)".

♦ Indice fondé sur les caractéristiques du peuplement des macro-invertébrés benthiques (présence ou non d’organismes dits polluo-sensibles).
Les résultats sont exprimés sous la forme de listes faunistiques par échantillon, quand la technique d’échantillonnage utilisée pour une zone donnée est homogène.

♦ Lien internet : http://id.eaufrance.fr/par/2527

♦ Équivalent étranger : Adapted global biotic index.

IBGN

♦ Acronyme pour : "Indice biotique global normalisé".
♦ Cet indice normalisé AFNOR (1992) a pour but de d’évaluer la tendance évolutive de la qualité des eaux des écosystèmes lotiques à partir d’indicateurs biologiques des eaux pures et des eaux polluées. Il constitue une information synthétique exprimant l’aptitude d’un cours d’eau courante au développement des invertébrés benthiques toutes causes confondues. Il permet un classement objectif des qualités biogènes de sites appartenant à des systèmes différents, naturels, modifiés, artificiels ou diversement dégradés.

Cette méthode permet de situer la qualité biologique d’un site en dehors de toute présomption relative à la nature d’une quelconque perturbation. Elle permet d’évaluer l’effet d’une modification du milieu de type naturel (affluence, modification du substrat, réchauffement des eaux…) ou provoquée artificiellement (rejet, recalibrage du lit…). Elle est utilisée pour compléter les techniques usuelles de qualification et de détection des sources de perturbation (analyse physico-chimique des eaux, par exemple) par une indication ayant une signification différente, puisque visant à caractériser les perturbations par leurs effets et non par leurs causes, et plus globale puisque traduisant à la fois les caractéristiques de l’eau et du substrat.

> Quelques notions complémentaires doivent ici être présentées :

IBGN-1 ou Robustesse
Notion permettant d’aborder la fiabilité de la note IBGN ou IBGA obtenu. La robustesse se calcule de la même manière que l’indice auquel elle se rapproche, mais sans prendre en compte le premier taxon indicateur. Iv’=Iv-1 et In’=In du deuxième taxon indicateur. Le deuxième taxon indicateur peut être de même groupe faunistique indicateur que le premier. Il se caractérise par une note sur 20. C’est l’écart entre la robustesse et l’Indice IBGN ou IBGA qui détermine la fiabilité de la note et la qualité de l’appréciation du site.

Indice variété, Iv
Classe de qualité qui traduit la diversité faunistique observée dans l’échantillon, la variété faunistique étant le nombre de taxons différents inventoriés sur un échantillonnage.

Indice nature, In
Classe de polluosensiblité du Groupe faunistique Indicateur ou Groupe Indicateur (Groupe de taxons indicateur appartenant à une même classe de polluosensibilité. Ces classes s’échelonnent de 1 à 9 du plus polluorésistant au plus polluosensible) observé sur la station étudiée. Il traduit la qualité de l’eau de la station. Plus la station est soumise à des pollutions, plus l’In est faible.

♦ Équivalent étranger : Normalized global biotic index (NGBI)

Synonymes - Indice biotique global normalisé, indice biologique global normalisé
IBMR

♦ Acronyme pour : "Indice Biologique Macrophytique en Rivières".
♦ Traduit essentiellement le degré trophique global d’un cours d’eau lié aux teneurs en nutriments (azote, phosphore), ainsi qu’aux pollutions organiques fermentescibles. Il dépend secondairement des caractéristiques physiques du milieu comme les intensités de la lumière, les écoulements et la sédimentation.
Son calcul se fonde sur l’observation exhaustive in situ des peuplements macrophytiques, l’identification des taxons et l’estimation de leurs recouvrements sur une surface donnée (minimum de 100m²) dans deux faciès de courant lentique et lotique. Un prélèvement d’échantillons est fait pour vérification taxonomique, si nécessaire. Le calcul de la note IBMR est réalisé à partir de la liste floristique, considérant les taxons de la liste des 209 taxons contributifs (fournie dans la norme AFNOR, 2003) et des cotes spécifiques (CSi) qui varient de 1 pour les espèces hyper-eutrophes à 20 pour les espèces oligotrophes.
Cette note s’obtient grâce à la formule suivante :

              ∑in (Ei x Ki x CSi)
IBMR = ────────────
             ∑in (E x Ki)

où pour une espèce i :
   • CSi correspond à la cote spécifique du niveau trophique,
   • Ki est le coefficient d’abondance (1 à 5 selon la gamme de recouvrement) et
   • Ei représente le coefficient de sténoécie (1 euryèce à 3 sténoèce).

♦ Équivalent étranger : Macrophytic Rivers Biological Index.

IBQS

♦ Acronyme pour : "Indicateur Biologique pour la Qualité des Sols".
♦ Indice composé de 25 indicateurs comprenant à la fois des paramètres biotiques (abondance et composition des communautés de nématodes, de vers de terre, d’enchytréides et de microarthropodes du sol), des paramètres fonctionnels (biomasse microbienne et respiration, diversité microbienne structurelle et fonctionnelle, cycles de C et N) et des paramètres abiotiques (paramètres chimiques et mode d’occupation des sols).
L’utilisation de différents types de paramètres est un avantage, car elle permet une évaluation globale de la durabilité de l’utilisation du sol. Les valeurs d’indicateurs mesurées sur un site particulier sont comparées avec les valeurs de référence, obtenues sur le site de référence correspondant. Actuellement, le schéma comprend 10 situations de référence, incluant divers types d’exploitations agricoles sur des sols différents, des prairies semi-naturelles, landes et forêts, ainsi que des espaces verts urbains. Plus l’écart avec la communauté de référence est élevé, plus la perturbation est considérée importante. Les valeurs de chaque indicateur sont intégrées dans un histogramme radar, c’est-à-dire un histogramme circulaire représentant toutes les valeurs de l’indicateur, en les situant par rapport à la situation de référence souhaitée (la valeur de référence pour chaque variable est fixée à 100 %). Les écarts négatifs ou positifs par rapport au 100 % indiquent une rupture avec la situation de référence.

> L’IBQS se construit à partir d’un référentiel, c’est-à-dire d’un ensemble de sites qui représenteront l’essentiel de la diversité d’une région. Un échantillonnage en grille tient compte de la proportion et de la richesse des types d’utilisation dans le paysage. D’autres stratégies d’échantillonnage stratifié peuvent également être utilisées. Les sols échantillonnés sont caractérisés grâce à un ensemble de mesures physiques, chimiques et autres utilisées couramment pour évaluer la qualité du sol. Ils sont ensuite groupés en fonction de leur similarité physico-chimique. L’indice peut donc s’écrire :

IBQS = Σ ln(Di + 1) x Si

        où       Di est la densité moyenne de l’espèce i dans un site
                   Si la valeur indicatrice du taxon

Cette expression utilise la transformation logarithmique des abondances des macro-invertébrés afin de mieux souligner les différences entre les sites d’étude. Les deux critères utilisés pour le calcul de l’IBQS (Di et Si) permettent ainsi de réaliser une évaluation plus pertinente de l’état du sol que le seul critère de la diversité des taxons indicateurs, par exemple.
La densité des peuplements du sol peut être fortement modifiée par l’intensité des pratiques de gestion. Tenir compte de ce paramètre a un intérêt écologique important qui peut s’avérer essentiel quand on compare par exemple des milieux avec des niveaux de productivité différents.
Cette formule intègre que le nombre d’espèces indicatrices et leurs densités diminuent avec la dégradation du milieu.

> L’évaluation faite par l’IBQS peut être utilisée pour octroyer une note globale de qualité au sol et le classer par rapport à un référentiel de départ ou bien pour faire une interprétation de l’état écologique du sol grâce à l’analyse des espèces indicatrices présentes et leur mode de vie. Une augmentation de la note octroyée par l’indice indique une amélioration de la qualité du milieu.

♦ Équivalent étranger : Biological Indicator System for Soil Quality, BBSK.

Synonymes - Indicateur Biologique pour la Qualité des Sols
ICCN

♦ Acronyme pour : "Institut Congolais pour la Conservation de la Nature".
♦ Institut créé en 1975 dont - l'ordonnance loi 69-041 du 22 août 1969 en définit la politique de base ainsi que le statut des parcs nationaux et des réserves. - l'ordonnance n° 78-190 du 05 mai 1978 en établit les statuts
Site internet : http://www.iccnrdc.org/
♦ Équivalent étranger : Congolese Institute for the Conservation of Nature.

ICCROM

♦ Acronyme pour : "Centre international d’études pour la conservation et la restauration des biens culturels".
♦ Installé à Rome (Italie), cette organisation intergouvernementale créée en 1956 par l’UNESCO couvre par son mandat les domaines de la recherche, de la documentation, de l’assistance technique, de la formation et de la sensibilisation, au service de la conservation du patrimoine culturel meuble et immeuble. L’ICCROM est le partenaire privilégié de la Convention du patrimoine mondial pour la formation ; il surveille l’état de conservation des biens, examine les demandes d’assistance internationale soumises par les États parties et contribue aux activités de renforcement des capacités
♦ Site web : www.iccrom.org.
♦ Équivalent étranger : International Centre for the Study of the Preservation and Restoration of Cultural Property

ICE

♦ Acronyme pour :"Indicateur de changement écologique".
♦ Paramètre mesuré sur un animal ou un végétal dont l'évolution dépend de celle du système population / environnement. Afin de caractériser le changement d'état du système population / environnement, trois ICE sont complémentaires avec un suivi de longue durée sur (1) les variations d'abondance de la population, (2) la performance des individus et (3) la pression de la population sur son milieu.
♦ Équivalent étranger : Indicator of ecological change, IEC.

Ichtyofaune

♦ Ensemble des poissons vivant dans un espace géographique ou un habitat déterminé
Lien internet: https://glossaire.eauetbiodiversite.fr/concept/ichtyofaune
♦ Équivalent étranger : Ichtyofauna.

Ichtyologique

♦ Concerne l'ensemble des poissons vivant dans un espace géographique ou un habitat déterminé.
♦ Équivalent étranger : Ichtyological.

Ichtyoplancton

Partie du zooplancton constituée des œufs et des larves des poissons. La plupart des animaux marins sont ainsi planctoniques durant leurs premiers stades de vie.
♦ Équivalent étranger : Ichtyoplankton.

ICN

♦ Acronyme pour : "Indicateur de capital naturel".

♦ Indicateur qui vise à évaluer l'érosion de la biodiversité à partir de l'impact des activités humaines sur les habitats naturels. Il s'intéresse à la quantité et la qualité des habitats.
L'évolution quantitative des habitats est liée à la conversion d'espaces « naturels » en espaces agricoles et à l'urbanisation. L'évolution qualitative est liée à la pollution, au réchauffement climatique, à l'introduction d'espèces invasives et à la fragmentation des habitats qui se traduit par la diminution de l'abondance d'espèces clés de vertébrés et de végétaux.

> L'évolution de la qualité et de la quantité est calculée à partir d'un ratio qui représente un changement par rapport à un état de référence initial :

ICN = évolution de la quantité des écosystèmes (%) x évolution de la qualité des écosystèmes (%)

♦ Équivalent étranger : Index of natural capital.

Synonymes - Indicateur de capital naturel