Glossaire
Glossaires
Terme | Définition |
---|---|
Capacité de stockage de carbone | ♦ Quantité de carbone stockée dans un écosystème sous des conditions déterminées de l'environnement et de régime de perturbations naturelles, donc excluant toute perturbation d'origine anthropique. > Chaque année, sur les 8,9 gigatonnes (Gt) de carbone rejetées dans l'atmosphère en raison des activités humaines, 2,5 sont absorbées par les écosystèmes terrestres et 2,3 par les océans. Les gigatonnes restantes, en s'accumulant dans l'atmosphère, participent au réchauffement de la planète. Les réservoirs de carbone sur terre sont :
L'océan absorbe du carbone par deux mécanismes : une pompe physique et une pompe biologique. La pompe physique vient de la dissolution du CO2 atmosphérique d > Dans les eaux de surface : elle égalise la concentration en CO2 de chaque côté de l'interface eau/air. Ce mécanisme permet de stocker du carbone en profondeur pendant environ 1 000 ans (échelle de temps de la circulation océanique profonde). La pompe biologique est due à l'activité du phytoplancton de surface : par photosynthèse, il fixe le CO2 dissous dans les eaux de surface, réduisant ainsi la quantité de CO2 en surface, donc augmentant l'absorption. À leur mort, les organismes tombent puis sédimentent, stockant le CO2 dans les sédiments océaniques pendant plusieurs dizaines de milliers d'années. Cependant, ce phytoplancton est sensible à l'acidité : l'acidification de l'océan par l'augmentation de la concentration en CO2 risque donc d'en réduire la quantité, et, par là-même, l'efficacité de la pompe biologique. Par ailleurs, la végétation aquatique dans les zones côtières contribue significativement à la séquestration du carbone dans les sédiments océaniques, dont on estime qu'entre 50 et 71 % provient de ces écosystèmes côtiers. > La végétation absorbe le CO2 par photosynthèse, en particulier lors de sa croissance. Ce carbone est ensuite stocké, d'abord dans les végétaux, puis à leur mort dans le sol. Tous les sols ne stockent pas la même quantité de carbone, ni pendant la même durée, mais de façon générale, les forêts, les tourbières et les prairies naturelles stockent plus de carbone que les terres agricoles cultivées intensivement. > Les tourbières occupent la première place dans la hiérarchie des écosystèmes terrestres stockant le plus de carbone. En raison de conditions asphyxiantes (présence d'eau permanente), le taux de décomposition des végétaux accumulés est très faible, conduisant à une accumulation de matière organique, donc de carbone. Exploitées depuis des temps immémoriaux comme source de combustible, elles sont aujourd'hui gravement menacées à plus large échelle. Dans de nombreux pays, elles subissent des drainages visant à créer des terres cultivables, ce qui augmente le risque d'incendie dans ces milieux fragiles et réamorce les processus de décomposition. > Les tourbières tropicales abritent l'une des plus grandes réserves de carbone à l'état organique du monde, réserve qui en contiendrait environ 89 000 téragrammes (1 Tg est égal à un milliard de kilogrammes). L'Indonésie recèle quelques 65 % de cette réserve de carbone. Le défrichement des forêts tropicales indonésiennes, afin de cultiver des palmiers pour l'huile de palme, provoque le relâchage de dioxyde de carbone. Ainsi, la déforestation tropicale contribue à 18 % des émissions mondiales de gaz à effet de serre. On estime que le bilan carbone d'une forêt ayant subi une coupe rase redevient positif seulement au bout de 15 ans. L'exploitation des forêts primaires a donc des impacts durables sur leurs capacités de stockage de carbone, même si elles sont reboisées par la suite. > Les habitats tels que les mangroves, marais saumâtres, herbiers marins et récifs coralliens représentent plus de 50 % du stock de carbone sédimentaire des océans. Ces écosystèmes stockent l'équivalent de la moitié des émissions annuelles du secteur du transport. La biomasse des océans ne représente que 0,05 % de la biomasse terrestre, et pourtant, elle capte près de 55 % du carbone utilisé par les végétaux. > L'écosystème forestier (et en particulier le système arbre/sol) est, après le plancton océanique et avec les tourbières et les prairies, le principal puits de carbone naturel planétaire, essentiel au cycle du carbone. Il accumule d'énormes quantités de carbone dans le bois, les racines, le sol et l'écosystème via la photosynthèse. L'ONU/FAO estime que « l'expansion des plantations d'arbres pourrait compenser 15 % des émissions de carbone des combustibles fossiles » dans la première moitié du XXIème siècle sous réserve qu'elles ne le relarguent pas prématurément, et qu'on n'ait pas surestimé les surfaces enforestées et leur capacité de stockage et qu'il ne s'agisse pas que de plantations d'essences à croissance rapide. > Quand l'arbre meurt, il est décomposé par des communautés saproxylophages (bactéries, champignons et invertébrés) qui recyclent son carbone sous forme de biomasse, nécromasse (cadavres, excrétas et excréments de ces organismes) et sous forme de gaz (CO2, méthane, libérés dans l'atmosphère ou l'eau). La forêt et d'autres écosystèmes continueront à stocker ou recycler ce carbone par une régénération naturelle. Toutes les forêts tempérées (hors incendies et exploitation) accumulent le carbone. Une grande partie des forêts tropicales (hors forêts tourbeuses) sont réputées stables (source = puits), et les forêts boréales jouent un rôle plus complexe (plus sensibles aux défoliations et au feu). > Il est distingué quatre différents stocks de carbone :
Dans un contexte climatique incertain, certaines forêts plus vulnérables peuvent devenir des sources de CO2, notamment en cas d'incendie, ou provisoirement après les grands chablis couchés par de fortes tempêtes ou après les grandes coupes rases. ♦ Équivalent étranger : Carbone storage capacity. |
Capacité limite | ♦ Nombre maximum d'individus qu'un environnement donné peut supporter sans dommage. |
Capacité piscicole | ♦ À qualité d’eau et niveau trophique égaux, la capacité piscicole d’un site d’eau courante est déterminée par la diversité et la qualité des combinaisons de hauteurs d’eau, de vitesses de courant et de substrats/supports. La démarche diagnostique consiste à réaliser une cartographie codifiée de chacune des composantes de la qualité physique, puis de considérer leur combinaison. Les compositions des différentes mosaïques et et de leur superposition peuvent ainsi être appréciées et confrontées d’une station à l’autre. |
Capacité reproductive | ♦ Possibilité pour un organisme de produire une descendance viable, mesurée par le nombre de jeune ou le taux de survie à un stade de la reproduction. |
Capacité tampon | ♦ Désigne la capacité d'atténuer l'effet (nuisible) d'un facteur ou d'un processus. Souvent, le tampon absorbe le facteur nuisible et le transforme en un composé inoffensif. Les capacités tampons des écosystèmes expliquent leurs réponses non linéaires aux nuisances. |
Capital naturel | ♦ Métaphore économique pour définir les stocks limités de ressources naturelles physiques et biologiques trouvées sur terre. Il existerait quatre type de ressources : le capital naturel renouvelable (espèces vivantes et écosystèmes), le capital nature non renouvelable (sous-sol, pétrole...), le capital nature réapprovisionnable (air, eau potable...) et le capital nature cultivé (cultures et plantations forestières). |
Capsule | ♦ Fruit sec qui libère les graines quand il s'ouvre. |
Capturabilité | ♦ Probabilité d'être capturé par unité d'effort, pour un individu pris au hasard dans un ensemble, par exemple une classe d'âge. |
Captures | ♦ Nombre ou poids de tous les poissons pêchés, que les poissons aient été débarqués ou non. |
Captures accidentelles, prises accessoires | ♦ Espèces capturées involontairement dont l'occurrence est faible. |
Captures par unité d’effort | ♦ Captures totales divisées par l'effort total utilisé pour capturer cette quantité. |
Captures/recaptures | ♦ Méthode d'étude qui consiste à capturer, marquer et recapturer afin de déterminer l'importance de la population et sa structure démographique. Le principe de base consiste à :
Comme n1 est un échantillon de taille inconnue de la population totale, on écrit l'équation : P = n1 / N Lors de la recapture, un échantillon de taille n2 est collecté et le nombre d'animaux marqués m2 est compté. P = m2 / n2 = n1/N d'où l'équation donnant la taille de la population totale : N = n1 n2 / m2 Cette équation de base suppose de travailler avec une population fermée (pas de migration, pas de mortalité ni de naissance). Si la population est ouverte, la probabilité de capture risque de changer, par exemple de diminuer, et dans ce cas, N (la population totale) risque d'être surestimé. Des modèles plus complets ont donc été développés afin de tenir compte de ces éléments. Pour les poissons, cette technique consiste à prélever, en deux ou trois passages, la totalité des individus de plus de deux centimètres observés sur la station d’étude. Chaque individu est mesuré, pesé, sexé et marqué avec du vernis à ongle, puis remis à l’eau sur la station. mt / NT = rm / Rt L’écart-type de ce résultat prend la forme :
Pour les populations présentant de fortes densités, il est possible d’effectuer une troisième pêche 48 heures après la deuxième, en effectuant un deuxième marquage différent du premier. L’estimation de l’effectif de la population se calcule alors avec la méthode de Schnabel ajustée par Chapman (1952) : Nt = Σ [ (Ci mi) / (R + 1) ] Nt : effectif de la population L’écart-type de ce résultat prend la forme : σ2 = R / [ Σ ( Ci x mi ) ] 2 Les conditions d’application sont les mêmes que pour la méthode de Petersen. ♦ Équivalent étranger : Mark-recapture method. |
CAR | ♦ Acronyme pour : "Consentement à recevoir" |
Caractère | ♦ N‟importe quelle caractéristique, apparence ou propriété d'un organisme. |
Caractère naturel - degré de naturalité |