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Reproductive inequality, or reproductive skew, drives natural selection,
but has been difficult to assess, particularly for males in species with pro-
miscuous mating and slow life histories, such as bonobos (Pan paniscus)
and chimpanzees (Pan troglodytes). Although bonobos are often portrayed
as more egalitarian than chimpanzees, genetic studies have found high
male reproductive skew in bonobos. Here, we discuss mechanisms likely
to affect male reproductive skew in Pan, then re-examine skew patterns
using paternity data from published work and new data from the Kokolo-
pori Bonobo Reserve, Democratic Republic of Congo and Gombe National
Park, Tanzania. Using the multinomial index (M ), we found considerable
overlap in skew between the species, but the highest skew occurred
among bonobos. Additionally, for two of three bonobo communities,
but no chimpanzee communities, the highest ranking male had greater
siring success than predicted by priority-of-access. Thus, an expanded
dataset covering a broader demographic range confirms that bonobos
have high male reproductive skew. Detailed comparison of data from
Pan highlights that reproductive skew models should consider male–
male dynamics including the effect of between-group competition on incen-
tives for reproductive concessions, but also female grouping patterns and
factors related to male–female dynamics including the expression of
female choice.

This article is part of the theme issue ‘Evolutionary ecology of
inequality’.
1. Introduction
Given that natural selection results from differential reproductive success, factors
affecting the distribution of reproduction constitute a central issue for under-
standing social evolution [1]. Disparities in individual physical condition,
access to resources, social status and social relationships can lead to inequality
in reproduction, also known as reproductive skew [2]. Across societies, the
degree of inequality in lifetime reproductive success varies from low, such as
in cooperatively breeding greater ani (Crotophaga major) [3], to high, such as in
eusocial naked-mole rats (Heterocephalus glaber) [4] and mound-building termites
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(Macrotermes) [5], in which many individuals assist the repro-
duction of one fertile pair. Efforts to establish a unified
theory of reproductive skew depend on long-term field data
from species living in a broad range of societies. Such data
have been difficult to obtain, however, particularly for males
in species with internal fertilization, promiscuous mating,
and slow life histories, including our closest living relatives,
chimpanzees (Pan troglodytes) and bonobos (Pan paniscus).

In a strictly promiscuous mating system, where males and
females mate indiscriminately, equal access to reproductive
opportunities can theoretically occur. In practice, however,
the distribution of paternities often deviates from an equal
distribution owing to competition and conflicting interests
within and between the sexes [6–10], as observed in a
broad range of species, including rock iguanas (Cyclura
nubila caymanensis) [11], acorn woodpeckers (Melanerpes
formicivorus) [12], tree sloths (Bradypus variegatus and Choloe-
pus hoffmanni) [13], buffy flower bats (Erophylla sezekorni) [14],
spotted hyaenas (Crocuta crocuta) [15], white-faced capuchins
(Cebus capucinus) [16], Barbary macaques (Macaca sylvanus)
[17] and yellow baboons (Papio cynocephalus) [18]. This in
turn shapes male and female reproductive strategies [19].
On one hand, males seek to increase reproductive success
through strategies including contest competition with other
males, sperm competition, efforts to constrain female
mating behaviour with sexual coercion, and infanticides
[20–22]. On the other hand, females compete among them-
selves for resources to enhance offspring survival while
trying to obtain benefits from males such as good genes,
paternal care, and help in resource acquisition [20–22]. The
interplay of these strategies makes it difficult to assess the
relative importance of different factors affecting male
reproductive success across species [6,17,23].

The various models proposed to explain male reproduc-
tive skew generally focus on the ability of males to
monopolize reproductive opportunities with females [24,25]
and to control reproductive activities of other males [1,7,26–
30]. The priority-of-access (PoA) model [31] provides a
useful heuristic for the expected distribution of paternities
in a given multi-male, multi-female group. This model
assumes that males queue for reproductive opportunities
based on their competitive ability and the availability of fer-
tile females at a given point in time. Deviations from this
expected distribution can arise when dominant males
cannot control reproductive access to sexually receptive
females [27] or when they permit reproduction by other
males [32]. Explaining such deviations require theoretical
models that focus on the ultimate reasons for group for-
mation, including fitness benefits that males may gain from
group-living even if low-ranking [33].

The limited-control and concession models seek to
explain variation in male reproductive skew across species,
considering the ultimate reasons for low-ranking males to
stay in a group. Under the limited-control model, the highest
ranking male does not have complete control over the repro-
ductive activities of other males and females, which may
result in low-ranking males gaining reproductive opportu-
nities [7,26–29]. Empirical evidence supports this model
across taxa including acorn woodpeckers [12], American
crows (Corvus brachyrhynchos) [34], meerkats (Suricata suri-
catta) [35], spotted hyaenas [15], mandrills (Mandrillus
sphinx) [36], rhesus macaques (Macaca mulatta) [17] and
mountain gorillas (Gorilla gorilla beringei) [37].
Alternatively, the concession model assumes that the
highest ranking male controls reproduction in the group
and permits reproduction by lower ranking males in
exchange for social benefits [1,7,26,27,30]. This model was
originally developed to explain reproductive skew in eusocial
insects, where dominant queens control reproduction by
destroying eggs laid by subordinate queens [32]. Coopera-
tively breeding species such as dwarf mongooses (Helogale
parvula) provide some empirical evidence to support this
model, as dominant individuals apparently concede a share
of reproduction to subordinates to entice their cooperation
in offspring rearing [38]. Nevertheless, in many group-
living species, it may rarely be the case that top-ranking
males sufficiently control reproductive access to females
that concessions need to be invoked. As noted above, top-
ranking males appear to lack complete control over reproduc-
tive opportunities in a broad range of species. However, even
without complete control, these males may still benefit by
conceding some of the reproduction which they can control
in exchange for other benefits [33,39]. The reproductive
concession and the limited-control models can, therefore, be
difficult to distinguish.

Understanding male reproductive skew in our two closest
living relatives, chimpanzees and bonobos, is challenging
owing to their long lives and low reproductive rates. Both
species live in multi-male, multi-female communities
[40–44] with: (i) fission–fusion dynamics, in which individ-
uals travel in subgroups (parties) that can vary in size and
composition throughout the day [41,42,45]; (ii) female-
biased dispersal [41,44,46,47]; (iii) promiscuous mating
[41,46,48]; and (iv) female signalling of fertility though
sexual swellings [49–51]. Bonobos are commonly considered
to be more peaceful and egalitarian than chimpanzees
[42,52,53]. Consistent with this notion, one study based on
mating behaviour found bonobos to have low reproductive
skew [23]. However, studies using genetic paternity data
revealed that bonobos at LuiKotale [54,55] and Wamba [56]
have high reproductive skew, even higher than that reported
for both eastern (Pan troglodytes schweinfurthii: Gombe,
Mahale, Kibale and Budongo) and western (Pan troglodytes
verus: Taï) chimpanzees [54]. However, the sample reported
for bonobos remains small (12 population-years in bonobos
compared to 41 population-years in chimpanzees) [54].

In this review, we will first consider potential mechanisms
underlying reproductive skew in Pan. Second, we re-examine
reproductive skew in Pan using existing and new data for
bonobos (n = 27 population-years) and chimpanzees (n = 91
population-years). Third, we re-evaluate the mechanisms
underlying reproductive skew in Pan and consider the
broader consequences of our findings.
2. Mechanisms underlying reproductive skew
in Pan

In many species, including fig wasps [57], wire-tailed mana-
kins (Pipra filicauda) [58], greater sage-grouse (Centrocercus
urophasianus) [59], Weddell seals (Leptonychotes weddellii)
[60], elephant seals (Mirounga leonine) [61], feral horses
(Equus ferus caballus), plains zebras (Equus quagga) [62] and
red deer (Cervus elaphus) [63], high male reproductive skew
results from intense contest competition between males. Con-
trary to the common portrayal of bonobos as peaceful, in both
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bonobos [55,64–67] and chimpanzees [68–74], more aggres-
sive, high-ranking males obtain more mating success than
less aggressive, low-ranking males. Nonetheless, dominance
status does not completely predict male reproductive success
in Pan, requiring the consideration of additional mechanisms
[28,75,76].
lishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220301
(a) Mechanisms operating under reproductive
concession

(i) Importance of male coalitionary aggression and opportunities
for extra-community paternities

High-ranking males can gain fitness benefits from reproduc-
tive concessions when their reproductive success depends
on the support of coalition members, as in wire-tailed mana-
kins (Pi. filicauda) [58], bottlenose dolphins (Tursiops aduncus)
[77] and lions (Panthera leo) [78]. Male chimpanzees defend
a group territory, which serves as a feeding territory for
themselves, their mates and their offspring; females repro-
duce faster when territory size is larger [79]. Males depend
on support from other males to patrol territory boundaries
and exclude outside males from mating with resident
females [76,80,81], and to attack and kill extra-community
members [82–86]. Within communities, males may also
rely on support from allies to achieve high status and
gain mating opportunities [28,75,87,88]. With their strictly
hostile inter-community interactions and strong cooperative
outgroup defence, male chimpanzees reduce opportuni-
ties for within-community females to reproduce with
extra-community males.

Unlike male chimpanzees, male bonobos rarely provide
agonistic support to other males [89], and mostly rely on indi-
vidualistic strategies during conflict within [66,67,89] and
between communities [90,91]. Thus, high-ranking male bono-
bos may have little motivation to concede reproductive
opportunities, which should increase reproductive skew
(table 1). Moreover, without strong coalitions among males,
interactions among neighbouring bonobo communities are
more relaxed; males and females can spend many hours
associating with extra-community individuals [52,90,92–94],
creating opportunities for males to sire offspring in other
communities. Such opportunities can result in further
inequalities in lifetime reproductive success, particularly if
they correlate with dominance rank (table 1).
(b) Mechanisms operating under limited-control
(i) Social cohesion and female gregariousness
Although variation in social cohesion occurs across chimpanzee
communities (Budongo [95]; Gombe: [96–98]; Kanyawara:
[99,100]; Mahale:[101]; Ngogo [102,103]; Taï [69,104,105]), bono-
bos generally appear to travel in larger [106–111] and more
cohesive parties [104,112] than chimpanzees, with females
being more gregarious in the former [106,109,112]. The mean
bonobo party size contains 27–51% of all community members
(n= 2 communities), compared to only 9–20% for chimpanzees
(n= 8 communities) [106]. Increased female social cohesion may
allow male bonobos to monitor the reproductive status and
activity of maximally tumescent females more effectively,
potentially leading to higher male reproductive skew in
bonobos than chimpanzees (table 1).
In chimpanzees, the more dispersed ranging patterns of
females may provide opportunities for consortships whereby
a male and female travel together, away from others
[71,76,113,114]. Insofar as lower ranking males use
consortships to evade control by higher ranking males,
consortships should reduce reproductive skew (table 1).

(ii) Female reproductive synchrony
Female reproductive synchrony can hinder reproductive mon-
opolization by high-ranking males [23,25,115], decreasing male
reproductive skew. In primates, sexual swellings appear to
have evolved as a female strategy to attract mating effort
from many different males, thereby confusing paternity and
reducing infanticide risk [115–118]. While both bonobos and
chimpanzees exhibit sexual swellings, the extent to which
females synchronously display full tumescence differs between
the two species. Compared to chimpanzees, female bonobos:
(i) resume swelling sooner after giving birth [49,51,64,119–
122]; (ii) have longer maximally tumescent phases and greater
variation in their duration; and (iii) therefore, spend a larger
proportion of their interbirth intervals maximally tumescent
[49,116,119,120,123]. Hence, for a given number of females, at
any given time, more females display full tumescence in
bonobos than chimpanzees [52,124]. Because bonobo swellings
signal ovulation less reliably, monitoring and mate-guarding
females seemmore difficult and costly for male bonobos, redu-
cing male reproductive skew compared to chimpanzees [55]
(table 1).

(iii) Additional cues of ovulation
In mammals, males also rely on other signals to infer female
reproductive status and fecundability. This includes the use
of olfactory cues by males in Djungarian hamsters (Phodopus
campbelli) [125], ring-tailed lemurs (Lemur catta) [126] and
cotton-top tamarins (Saguinus oedipus) [127]; the use of
female vocal signals in grey mouse lemurs (Microcebus
murinus) [128] and Barbary macaques [129]; and detection
of female behavioural changes in rhesus macaques [130]
and long-tailed macaques (Macaca fasciularis) [131]. Repro-
ductive skew may then be increased, insofar as high-
ranking males are better able to act on this information
than low-ranking males. Chimpanzees in captivity use olfac-
tory cues to obtain information about social relationships
[132], suggesting they may be able to use them to detect ovu-
lation [133], but whether either species of Pan does, in fact, do
so remains untested.

(iv) Importance of female alliance
In some species, females may cooperate with kin to combat
male aggression and harassment (rhesus macaques:
[134,135]; olive baboons: [136]; also review by Smuts [137]).
Strikingly, in bonobos, females form coalitions with unrelated
females; this strategy may have evolved to counter sexual
coercion and/or infanticide by males [52,138,139]. One of
the key behaviours facilitating female social bonding in
bonobos is genito-genital rubbing, which often involves
maximally tumescent females [140,141]. Having a full swel-
ling, therefore, may increase a female’s value as a social
partner [104,142]. Thus, although sexual swellings presum-
ably originated as a reproductive signal to males [99], they
may also serve as a signal to attract affiliation and coalition-
ary support among females. This may in turn restrict males’



Table 1. Predicted effects of different mechanisms that may drive variation in male reproductive skew in Pan.

model mechanism

type of
relationship
affected

predicted
effect on
skew

which species
expected to have
higher skew

reproductive

concessions

reduced importance of male coalitionary aggression decreases

the need to reward allies with reproductive concessions

male–male increase bonobos

with little cooperative outgroup defence, increased opportunities

for extra- community paternities

male–male unclear unclear

limited-control increased social cohesion and female gregariousness increase

monopolizability of females by top-ranking male

female–female increase bonobos

lower number of females per community increases

monopolizability of females by top-ranking male

female–female increase bonobos

more apparent female reproductive synchrony female–female decrease chimpanzees

reduced infanticide risk reduces female need to distribute

paternity certainty across many males

male–female increase bonobos

additional cues of ovulation (e.g. odour) improves male ability

to detect fertile females and control reproduction

male–female increase unclear

increased importance of female alliances reduces males’ ability

to control reproduction

female–female;

male–female

unclear unclear

reduced male sexual coercion male–female unclear unclear

increased potential for expression of female mate preference male–female unclear unclear

increased influence of mothers on sons’ reproductive behaviour male–female unclear unclear

low number of males per community increases the ability of

high-ranking males to monitor the activities of low-ranking

males

male–male increase bonobos

within-community relatedness between sexes and inbreeding

avoidance

male–female decrease unclear
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reproductive control and increase females’ ability to express
their mate preferences; the resulting effect on male reproduc-
tive skew would depend on female preferences (see below).

(v) Male sexual coercion and female mate preference
While males commonly seek to control female reproductive
activities, females have their own goals and preferences.
Females can seek out preferred mating partners and avoid
or resist advances by non-preferred males. Among chimpan-
zees, females face the risk of sexual coercion by males
[69,74,76,143–147], and the extent to which females can
exercise mate choice remains disputed [116,146,148,149].
However, whether sexual coercion increases male reproduc-
tive skew depends on which males use this strategy. While
high-ranking male chimpanzees may coerce females to
restrict their mating activity [74,114,145], lower ranking
males also coerce females, including during consortships,
when males threaten and attack females if they do not
follow [71,76,114].

By contrast, female bonobos commonly outrank even the
highest ranking males [52,139] and they do not appear to
experience sexual coercion by males [67,139,150]. Thus,
female bonobos probably have a greater capacity to act on
their preferences than do female chimpanzees [151,152].

Factors that guide female preferences may affect
male reproductive skew differently. Females can use male
dominance status as a cue of genetic quality [153–155], in
which case increased female choice would increase male
reproductive skew, such as in Verreaux’s sifakas [156] and
white-faced capuchins [16], reaching an extreme in species
with a lek mating system [157], such as in black grouse (Lyr-
urus tetrix) [158] and wire-tailed manakins (Pi. filicauda) [58].
Alternatively, if females base their choice on male traits that
do not necessarily depend on dominance rank, such as the
provisioning of resources, paternal care or other services,
increased expression of female choice could reduce male
reproductive skew. In spotted hyaenas, where females are
dominant over males, females can express their preferences
and tend to mate with immigrant males that are typically
lower ranking than natal resident males, potentially to
ensure genetic diversity in their offspring [15]. In bonobos,
females both affiliate and copulate more with high-ranking
than low-ranking males [66], suggesting that female prefer-
ences combine with competition among males to increase
male bonobo reproductive skew [146] (table 1).

(vi) Influence of mothers
Mothers can assist the reproductive success of their sons
[159], as reported in orcas (Orcinus orca) [160] and northern
muriquis (Brachyteles hypoxanthus) [161]. Although in chim-
panzees, sons with mothers present have a higher rank and
reproductive success [96,162–166], the impact of mothers
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appears stronger and more direct in bonobos [89,167,168].
Bonobo mothers may support their sons by interrupting
copulations between females and other males [168], provid-
ing agonistic support to their sons during conflict with
other males [52,139]. Males may also take advantage of
their mother’s social ties, to monitor maximally tumescent
females more effectively, and to form close associations and
copulate with them [169]. Because high-ranking females
often occupy high-quality food patches [170], other females
potentially mate with the sons of high-ranking females in
exchange for better access to food. The effect of mothers on
male reproductive skew probably depends on whether it is
high- or low-ranking sons that have a living mother to
provide support (table 1).

(vii) Number of males
The number of males per group probably impacts the poten-
tial for male reproductive control [18,23,115,171–173]. In the
Kasekela chimpanzee community at Gombe, low-ranking
males sometimes do manage to sire offspring, despite PoA
expectations, perhaps because males are too numerous and
dispersed to be monitored effectively by the highest ranking
male [76]. In this situation, the highest ranking male may
focus on monitoring males that are close to him in rank
[76]. Overall, we should expect male reproductive skew to
be lower in communities with more males (table 1).

(viii) Relatedness
Within-community relatedness may also influence the ability
of high-ranking males to control female reproduction and
thus the degree of male reproductive skew, owing to female
efforts to avoid inbreeding [174]. Even when they remain in
their natal community, female chimpanzees frequently reject
mating attempts by close male kin and generally avoid con-
ceiving offspring with them [174]. As in spotted hyaenas
[15] and white-faced capuchins [175], females with high-
ranking male relatives may willingly participate in consort-
ships and mate preferentially with lower ranking, unrelated
males to avoid costs of inbreeding [71,76,113,114]. High
relatedness within communities may thus reduce male repro-
ductive skew, but only insofar as females have high-ranking
male kin, because low-ranking male kin may already be
excluded from mating opportunities (table 1).
3. Existing data on reproductive skew in bonobos
and chimpanzees

Among the 13 mechanisms reviewed above, which poten-
tially affect variation in male reproductive skew in Pan, five
predict higher reproductive skew for bonobos compared to
chimpanzees, whereas only one mechanism predicts higher
reproductive skew for chimpanzees (table 1). The relative
importance of these different mechanisms remains to be
assessed. Nonetheless, while a previous analysis based on
mating behaviour inferred that bonobos should have low
reproductive skew [23], the introduction of genetic paternity
data revealed that high-ranking males bonobos sire more off-
spring [55]. For example, the most successful male in the
Bompusa bonobo community sired 62% of the offspring
during a 7 year period, in contrast with chimpanzees, in
which the most successful male sired a mean of 26% of
offspring (range: 7–56% for n = 5 communities) [54]. Similarly,
genetic paternity data from Wamba bonobos revealed that
the most successful male sired 86% and 75% of the offspring
during a 4 year period for communities E1 and PE, respect-
ively [56]. However, recent data from a small chimpanzee
community at Bulindi found that the most successful male
sired 88% of the offspring over a 4 year period [176], indicat-
ing that under suitable circumstances, chimpanzees can also
exhibit high male reproductive skew. Thus, the extent to
which male reproductive skew differs consistently between
bonobos and chimpanzees warrants further investigation.

In long-lived, slowly reproducing taxa such as primates, it
takes many years to obtain a clear understanding of factors
affecting reproductive success [33]. For example, early studies
of baboons (Papio spp. [18,177–183]) reported conflicting find-
ings regarding the relationship between male rank and
reproductive success. Only after many group-years of genetic
paternity data had been obtained did it become clear that
higher ranking males generally sire more offspring, but that
over shorter time-scales factors such as demographic compo-
sition can disrupt the relationship between male rank and
reproductive success [18,184]. Similarly, among mountain
gorillas, researchers initially assumed the top-ranking male
sired all offspring, but genetic paternity data eventually
revealed reproduction by other males in groups with
multiple males [17,37,184,185]. Accumulating data from
different bonobo and chimpanzee populations now provide
new opportunities for understanding male reproductive
skew in Pan. We re-examine male reproductive skew in Pan
by collating published data from Surbeck et al. [54], Ishizuka
et al. [56] and McCarthy et al. [176] with new data from two
chimpanzee communities in Gombe National Park, Tanzania,
and two additional bonobo communities at the Kokolopori
Bonobo Reserve, Democratic Republic of Congo. This results
in a total of 91 population-years for chimpanzees and
27 population-years for bonobos, which provides greater
statistical power than previous studies.
4. Methods to re-evaluate male reproductive
skew in Pan

The PoA model uses a simple queuing model to provide a
baseline of expected patterns of reproductive skew for a
given number of males and fertile females. We therefore first
examined the extent to which bonobos and chimpanzees
followed or deviated from PoA predictions. Then we charac-
terized and compared patterns of skew between the two
species, using the multinomial index (M), the most successful
sire’s share, and the total number of within-community and
extra-community offspring sired by identified males per
year. We included only males old enough to potentially sire
offspring (i.e. ≥10 years old) in all analyses, including only off-
spring with assigned fathers. We considered extra-community
offspring as those with an identified within-community
mother and an identified extra-community father. To calculate
PoA, M, and the most successful sire’s share, we considered
only within-community offspring. Finally, we examined the
effect of male demography on reproductive skew by conduct-
ing linear mixed models with M or the most successful sire’s
share as the dependent variable and the mean number
of males per conception during the time period as the
independent variable (electronic supplementary material).
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To calculate skew, we included bonobo communities from
three sites in the Democratic Republic of Congo: Bompusa
from Luikotale [54] (n= 13 paternities), E1 from Wamba (n =
7 paternities) [56], and Ekalakala and Kokoalongo from Koko-
lopori (n= 20 paternities) (this study). For PoA, M, and the
most successful sire’s share, we included all individuals that
were conceived between 2016 and 2019 in Ekalakala (n = 5
paternities) and Kokoalongo (n = 8 paternities). For the total
number of offspring sired by each male per year, we included
data from 2013 to 2019 for Ekalakala (n = 7) and included five
extra-community paternities (Ekalakala: n= 4; Kokoalongo: n =
1). For the most successful sire’s share, we also included PE
from Wamba (n = 4 paternities) [56].

For chimpanzees, we included six communities for eastern
chimpanzees (Pan t. schweinfurthii): Ngogo, Kibale National
Park, Uganda (n = 109 paternities); Sonso, Budongo Forest,
Uganda (n = 13 paternities); Bulindi, Uganda (n = 7 paternities)
[176]; M-group, Mahale National Park, Tanzania (n = 11 pater-
nities); and Kasekela and Mitumba from Gombe National
Park, Tanzania (n = 75 paternities) (this study); and one com-
munity of western chimpanzees: North, Taï, Côte d’Ivoire
(n = 13 paternities) [54] (electronic supplementary material,
table S2).

For Gombe chimpanzees, we included genotyped indi-
viduals born between 1985 and 2017 (n = 62 paternities) in
Kasekela and between 2004 and 2013 (n = 13 paternities) in
Mitumba.

(a) Priority-of-access model
Using data on female reproductive states and demography, we
calculated the expected distribution of paternities (n= 75 for
chimpanzees, n= 13 for bonobos) based on male dominance
rank and the number of maximally tumescent females available
at a given time in two chimpanzee communities (Kasekela and
Mitumba) and two bonobo communities (Ekalakala and
Kokoalongo), with 95% confidence intervals (CIs) for each
rank. We also included PoA calculations from Surbeck et al.
[54] for the Bompusa bonobo community, and Taï North and
Sonso chimpanzee communities [59]. Deviations from PoA
expectations imply the operation of other mechanisms besides
male dominance rank and female reproductive synchrony.

(b) Comparing bonobo and chimpanzee reproductive
skew

(i) The multinomial index
Many studies have used Nonac’s binomial index (B)
to measure reproductive skew [16,17,54,56,58,186–188]. How-
ever, this measure is sensitive to factors including community
size (e.g. number of potential sires), productivity (e.g.
number of paternities) and the time of presence of each sire
during the period of observation [189]. To overcome these
limitations, Ross et al. [189] introduced the multinomial
index, M, which is insensitive to community size, sample
size, mean reproductive success, and age-structure, allowing
for better comparisons of skew across populations and
species. M can be calculated using Nonac’s B and remains
robust to the factors previously cited through the conversion
[189]. We report M below and Nonac’s B in the electronic
supplementary material.

Because apes reproduce slowly, and changes in male rank
and demography each year can affect estimates of skew, we
calculated M for each community using an overlapping set of
time windows, moving at 1 year increments. We chose 7-year
windows when possible, to maximize comparability with pre-
vious studies [54]. However, for four communities, only 4
years of data were available. For communities with several
periods, we calculated the mean M across all overlapping
7-year periods.

To examine species differences in skew, we calculate 95%
CIs for M for chimpanzees for a given mean number of
males per conception using a parametric bootstrap. Since we
did not have sufficient data to calculate these intervals for
bonobos, we inferred species differences by visually inspecting
whether estimates of M for bonobos fell outside the 95% CIs
for chimpanzees. We used linear mixed models with M as
the dependent variable, and the mean number of males per
conception as the independent variable, with a random inter-
cept for the community and a random slope for the mean
number of males within each community. Ideally, we would
also control for the number of maximally tumescent females,
but these data were not available for seven communities.
From the results of these models, we generated 100 bootstrap
samples to obtain the 95% CIs (electronic supplementary
material).

(ii) Most successful male’s share of reproduction
As an additional measure of male reproductive skew, we
examined the proportion of offspring sired by the most
successful male in the community. This measure is indepen-
dent of differences in size and productivity between
communities and is not affected by the absence of unidenti-
fied/ungenotyped males who did not reproduce [54]. Along
with the data used to calculate M, we added data from
the PE bonobo community where information about the
most successful sire’s share of reproduction was available
(chimpanzees: n = 228 conceptions; bonobos: n = 37 con-
ceptions; electronic supplementary material, table S2). As
with M, we generated 95% confidence intervals for a given
mean number of males per conception in chimpanzees
(figure 2b; electronic supplementary material).

(iii) Total number of offspring sired by each male per year
The striking differences in inter-community relationships
between chimpanzees and bonobos can strongly affect male
reproductive opportunities. Specifically, the hostile relation-
ships between chimpanzee communities limit opportunities
for males to sire offspring with extra-community females,
whereas the more tolerant inter-community interactions of
bonobos provide opportunities for extra-community mating.
Therefore, we examined the number of within- and extra-com-
munity paternities obtained by each individual male in the
Kokolopori bonobo communities and the Gombe and Bulindi
chimpanzee communities. We could assign extra-community
paternities because we obtained genetic samples frommultiple
communities (electronic supplementary material).

Since calculation of the most successful sire’s share of
reproduction does not require information about the
number of males present in the community, we extended
the study period for Ekalakala from 2016–2019 to 2013–
2019, before the community was fully habituated. Doing so
enabled us to include all successfully assigned paternities,
whether the paternity was within-community (Ekalakala:
n = 7; Kokoalongo: n = 8; Bulindi: n = 8; Kasekela: n = 62;
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Mitumba: n = 13) or extra-community (Ekalakala: n = 4;
Kokoalongo: n = 1). The number of extra-community pater-
nities may be underestimated as males may have sired
offspring in other unfollowed and ungenotyped neighbour-
ing communities.

To facilitate between-community comparison, we calcu-
lated the mean number of offspring each male sired per
year, by dividing the total number of paternities for each
male by the total number of years this male was observed
during the respective study period.
5. New results on male reproductive skew in Pan
(a) Priority-of-access model
For both bonobos and chimpanzees, the highest ranking males
sired the highest proportion of offspring compared to other
males in the community (electronic supplementary material,
figure S2). For all four chimpanzee communities but only
one of the three bonobo communities, the observed proportion
fell within the 95% CI of that expected by the PoA model
(figure 1).
As previously reported [76], low-ranking Kasekela males
(ranks 10, 12, 13 and 15 of 15) obtained more offspring than
expected by the PoA model (electronic supplementary
material, figure S2). Although low-ranking males also obtained
more paternities than expected in Sonso (ranks 7 and 12 of 17)
and Taï North (rank 8 of 8), the distribution of male repro-
duction more closely aligned with patterns predicted by
the PoA model (electronic supplementary material, figure S2;
[54,80,81]).

(b) Comparing bonobo and chimpanzee reproductive
skew

(i) The multinomial index
As indicated by the multinomial index, M, bonobos had
higher male reproductive skew (mean ± s.d.: M = 2.57 ± 2.12;
n = 4 bonobo communities) than chimpanzees (M = 0.979 ±
0.819; n = 7 chimpanzee communities; electronic supple-
mentary material, table S2). Also, bonobos exhibited
greater variation in M than chimpanzees (electronic sup-
plementary material, figure S3a). Estimates of M for two
bonobo communities, Kokoalongo and E1, exceeded the
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95% CIs calculated for chimpanzees, whereas two other
bonobo communities, Ekalakala and Bompusa, were within
the chimpanzee range (figure 2a).
(ii) Most successful male’s share of reproduction
The most successful male sired more offspring in bonobos
(mean ± s.d.: 0.69 ± 0.11) than in chimpanzees (0.44 ± 0.25)
(electronic supplementary material, table S3). However,
only in one of the four bonobo communities (E1) did this
exceed the 95% CI for chimpanzees (figure 2b).
(iii) Total number of offspring sired by each male per year
Two male bonobos sired offspring in other communities:
NOI, in Ekalakala, sired three offspring in Kokoalongo
and one in Fekako (a habituated neighbouring community
with insufficient data to be included in this study), and
HEN, in Kokoalongo, sired one offspring in Ekalakala.
The distribution of male reproduction appeared more
skewed in Ekalakala when we considered both within-
and extra-community paternities (figure 3), as the most suc-
cessful male was NOI, whose four extra-community
paternities gave him a total of nine offspring (electronic sup-
plementary material, table S2). Measures that did not include
extra-community paternities—M and the most successful
sire’s share of reproduction—thus underestimated the
degree of reproductive skew in this population. The only
two males who sired extra-community offspring both had
their mother present in the community at the time of siring
(NOI and HEN).
6. Discussion
Based on data accumulating from long-term field studies, we
found considerable variation in reproductive skew within
and between communities of both Pan species. Overall, bono-
bos exhibited greater variation in M, an improved measure of
reproductive skew, than chimpanzees. The estimates for M
exceeded the 95% CI for chimpanzees for two out of three
bonobo communities, and the estimate for the most successful
sire’s share exceeded the 95%CI for chimpanzees forone of five
bonobo communities. However, we also found that the two
species overlapped in all three measures of male reproductive
skew (M, themost successful sire’s share, and the total number
of paternities per male per year). As has been found for other
species [17,37,184,185], longer term data thus provide a more
nuanced picture of male reproductive skew in Pan.

Despite the common perception of bonobos as more
peaceful than chimpanzees [42,52,53], several studies report
that males of both species compete over access to maximally
tumescent females (bonobos: [55,64–67,90]; chimpanzees:
[68–74]). Aggression among males thus drives reproductive
inequality in both species.

The number of males in the community may also affect
male–male competitive dynamics and thus reproductive
skew. Although the number of males did not have a statisti-
cally significant effect on skew in our dataset, we note that
among chimpanzees, skew was the highest in communities
with few males, and lower in communities with many
males (figure 2; electronic supplementary material). More
data are needed, even for chimpanzees, to ensure a sufficient
sample size to assess demographic effects with confidence.
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The hypothesis that high reproductive synchrony among
female bonobos should result in low reproductive skew [55]
is supported by the quantitative PoA predictions (electronic
supplementary material, figure S2). However, the highest
ranking male achieved more paternities than expected in
two of the three bonobo communities. We, therefore, must
consider additional mechanisms to explain male reproductive
skew in bonobos. One such mechanism involves higher gre-
gariousness among females, which allows male bonobos to
monitor and monopolize females more effectively. Addition-
ally, male bonobos appear to have fewer incentives to
concede reproduction than male chimpanzees, given the
reduced importance of male coalitions for intergroup compe-
tition in bonobos. Supporting this view, in chimpanzees, but
not bonobos, low-ranking males sire more offspring than
expected. However, this pattern could also result from the
more limited control possible in the larger, more dispersed
communities of chimpanzees; distinguishing among these
alternatives poses a formidable challenge [28].

While distinguishing between limited control and conces-
sions remains challenging, confirmation that bonobos have a
relatively high reproductive skew supports the view that
reproductive concessions may relate to the intensity of
between-group competition. In humans, researchers have pro-
posed that ‘reproductive levelling’ (i.e. low male reproductive
skew) evolved because intense between-group aggression
selected for more cooperation within groups [190,191]. The
contrast between bonobos and chimpanzees is consistent
with this hypothesis, though additional mechanisms should
also be considered. For example, Chapais [192] has argued
that polygyny declined in hominins after the invention of
deadly weapons increased the costs of competition among
males and decreased variance in competitive ability [192].

Differences in male–female dynamics between the two
species may additionally influence reproductive skew.
When considering the physiological mechanisms underlying
reproductive competition between males [193], bonobos and
chimpanzees show different patterns of associated changes in
testosterone levels [66,194]. Male chimpanzees have higher
aggression rates and testosterone levels in the presence of
maximally tumescent females [194]. By contrast, high-
ranking male bonobos, who are more aggressive to other
males but also more affiliative towards females, do not
have higher testosterone levels in the presence of maximally
tumescent females [66]. As heightened testosterone levels
during male mate competition generally indicate the rel-
evance of aggression in securing reproductive success
[193,195], other factors besides male–male aggression, such
as male–female affiliative interactions that are potentially
suppressed by high testosterone levels [66], may affect male
reproductive skew in bonobos.

Male reproductive skew depends not just on competition
among males, but also on relationships between males and
females, and female choice. Studies of other species have
found that males can gain mating opportunities by forming
close associations with females [181,196,197] and by caring
for offspring [181,196–199]. Female bonobos probably have
more agency in the expression of mate choice owing to
their high status [52,139] and strong female alliances
[52,138,139]. Because female bonobos tend to affiliate and
mate with high-ranking rather than low-ranking males,
female preferences probably contribute to higher skew in
bonobos than chimpanzees. Female choice can also explain
the occurrence of extra-community paternities in bonobos
and other species including superb fairy-wrens (Malurus
cyaneus) [200], blue tits (Parus caeruleus) [201], dwarf mon-
gooses [202], black howler monkeys (Alouatta caraya) [203],
ring-tailed lemurs [204], rhesus macaques [17], long-tailed
macaques [131] and toque macaques (Macaca sinica) [205].

In bonobos, the strongest relationship between males and
females involves mothers and sons. Interestingly, both males
that sired extra-community offspring had a living mother
present in their community. Bonobo mothers actively support
their son’s mating attempts with extra-community females
during inter-community encounters (L. Cheng 2018, personal
observation). However, the actual mechanism by which
maternal presence positively influences a male’s reproductive
success within and across communities needs further
investigation.

Our results confirm that substantial reproductive skew
can emerge among males in species with promiscuous
mating. While bonobos have long been characterized as
peaceful and egalitarian [42,52,53], with lower reproductive
skew [23,206] than chimpanzees, the accumulation of
additional paternity data provides a more nuanced view of
the competitive dynamics in reproductive contexts in Pan.

In summary, bonobo males have higher reproductive skew
than expected based on degree of reproductive synchrony
among females. Detailed comparison of factors promoting
reproductive skew inPanhighlights thatmodels of reproductive
skew should consider the effect of between-group competition
on incentives for reproductive concessions, as well as factors
beyond those related to male–male dynamics, such as female
grouping patterns and factors related tomale–female dynamics
including the expression of female choice.
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