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Abstract Habitat loss and hunting threaten bonobos (Pan paniscus), Endangered (IUCN)

great apes endemic to lowland rainforests of the Democratic Republic of Congo. Con-

servation planning requires a current, data-driven, rangewide map of probable bonobo

distribution and an understanding of key attributes of areas used by bonobos. We present a

rangewide suitability model for bonobos based on a maximum entropy algorithm in which

data associated with locations of bonobo nests helped predict suitable conditions across the

species’ entire range. We systematically evaluated available biotic and abiotic factors,

including a bonobo-specific forest fragmentation layer (forest edge density), and produced
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a final model revealing the importance of simple threat-based factors in a data poor

environment. We confronted the issue of survey bias in presence-only models and devised

a novel evaluation approach applicable to other taxa by comparing models built with data

from geographically distinct sub-regions that had higher survey effort. The model’s

classification accuracy was high (AUC = 0.82). Distance from agriculture and forest edge

density best predicted bonobo occurrence with bonobo nests more likely to occur farther

from agriculture and in areas of lower edge density. These results suggest that bonobos

either avoid areas of higher human activity, fragmented forests, or both, and that humans

reduce the effective habitat of bonobos. The model results contribute to an increased

understanding of threats to bonobo populations, as well as help identify priority areas for

future surveys and determine core bonobo protection areas.

Keywords Bonobo � Distribution � Fragmentation � Habitat � Hunting � IUCN/SSC

A.P.E.S. database � Pan paniscus

Introduction

Wildlife conservation relies on understanding patterns of species occurrence. With the

global human footprint ever growing and intensifying (Sanderson et al. 2002), approximate

delineations of species’ ranges exclusively based on historic data are no longer enough for
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conservation and minimum-impact infrastructure planning. As such, spatially-explicit

rangewide models that deliver fine-scaled information on suitable conditions are critical.

Such models can inform land-use plans designed to maintain connected, viable populations

of species. In the Democratic Republic of Congo (DRC), annual human population growth

is increasing rapidly—estimates range from 2.6 % (UNDP 2011) to 3.2 % (USAID

2010)—driving increased deforestation in areas of previously intact forest (Hansen et al.

2008; OSFAC 2010). Increased poverty from the collapse of the agricultural sector during

and following DRC’s recent civil wars has also contributed to a rise in bushmeat hunting,

which remains a substantial threat to the viability of many game species (Draulans and Van

Krunkelsven 2002; Yamagiwa 2003; Beyers et al. 2011).

Bonobos (Pan paniscus) are great apes listed as Endangered on the IUCN Red List since

2007 (Fruth et al. 2008). They are endemic to the lowland rainforests of DRC and are

threatened by both habitat loss and hunting (IUCN 2010). For conservation efforts to be

successful, up-to-date information on the rangewide distribution of bonobos and an eval-

uation of their threats is required (Grossmann et al. 2008). A bonobo conservation-action

planning meeting was held in Kinshasa, DRC in January 2011, with a large group of

bonobo experts and representatives from DRC’s government. Several objectives for

bonobo conservation were defined, including the promotion of strategic land-use man-

agement and conservation plans at local, regional and national levels. Achieving this

objective required spatial information about the probability of bonobo occurrence in un-

sampled areas and the characteristics and drivers of bonobo distribution.
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Junker et al. (2012) presented a first effort at providing such spatial information for all

great ape species across Africa. Here, we provide a finer resolution (100 m2 vs. 5 km2)

bonobo-specific rangewide suitability model that explores additional indices of threats.

Model development began in a collaborative workshop held in Kinshasa immediately prior

to the action-planning meeting. We used a maximum-entropy modeling approach (Max-

Ent; Phillips et al. 2006; Elith et al. 2010) that combined bonobo nest locations with

environmental layers to predict the spatial distribution of potentially suitable conditions.

Recognizing that suitable conditions include food availability, shelter, and security from

hunting, we used a suite of environmental variables to model bonobo distribution and

evaluated their relative prediction strength. To date, spatial vegetation data lack sufficient

detail to be relevant for bonobo foraging. We therefore focused on the presence of broad

forest types where bonobos are known to nest, abiotic factors that likely influence vege-

tation (and indirectly, occurrence of forage species), and proxies for hunting pressure as

measures of habitat security (Swenson 1982). For the purpose of this paper, we defined

suitable conditions as those locations where bonobo nests occur, which necessarily include

conditions with reduced risk of hunting.

MaxEnt is a modeling tool that uses presence-only occurrence data and has been found

to perform favorably in comparison to other presence-only models (Elith et al. 2006;

Hernandez et al. 2006). It has been widely applied in the species distribution modeling

literature: primate examples include monkeys in Amazonia (Boubli and de Lima 2009),

slow lorises in Southeast Asia (Thorn et al. 2009), and chimpanzees in West Africa (Torres

et al. 2010).

O. Ilambu � B.-I. Inogwabini
World Wildlife Fund, DRC, 14, Avenue Sergent Moke, Kinshasa, Commune de Ngaliema, Kinshasa,
Democratic Republic of the Congo
e-mail: oilambu@wwfcarpo.org

B.-I. Inogwabini
e-mail: bi4@kent.ac.uk

A. L. Lokasola
Kokolopori Bonobo Nature Reserve, Avenue Nguma Numero 80, Ma Campagne, Kinshasa,
Democratic Republic of the Congo
e-mail: viesauvage@yahoo.fr

A. Lushimba
African Wildlife Foundation, Kinshasa Office, 12 Avenue Comité Urbain, Gombe, Kinshasa,
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We present a rangewide map of modeled relative suitability for bonobos. The map and

approach serve as a foundation for further refinement as improved habitat data become

available. The DRC Government recognizes the need for sustainable land-use planning,

and local and international non-government organizations have generated momentum

toward achieving it (USAID 2010). Our map and results will assist planning efforts by

providing necessary information for bonobo conservation prioritization.

Study area

The bonobo range, located in central DRC, is defined by the Congo River to the north and

west, the Lualaba River to the east, and the Kasai/Sankuru Rivers to the south (IUCN

2010). Although the distribution of bonobos is currently thought to be discontinuous with

isolated populations located in the western portion of the range, we included the entire area

in our model because the collective knowledge on bonobo occurrence, especially in

unsurveyed areas, is still expanding. We therefore developed a contiguous boundary based

initially on the IUCN (2010) range and then expanded it to encompass all known bonobo

occurrences southward to the Kasai River, thereby eliminating any isolated pockets

(Fig. 1). The total area of this range is approximately 563,330 km2.

Materials and methods

Bonobo data

Multiple entities collected the presence-only bonobo data used in this model. These data

were compiled as part of the IUCN/SSC primate specialist group (PSG) Apes, Populations,

Environments, and Surveys (A.P.E.S.) database managed by the Max Planck Institute for

Evolutionary Anthropology. The IUCN/SSC A.P.E.S. database provides a global picture of

the distribution and status of great apes and informs their long-term management and

conservation. During the Kinshasa workshop, we evaluated the presence-only data and

performed quality assessment and control prior to modeling. We used bonobo nest loca-

tions collected between years 2003 and 2010 from the IUCN/SSC A.P.E.S. database, rather

than all signs (e.g. feeding remains or tracks) in order to characterize habitat where

bonobos nest rather than areas used only for transient movement. Numerous teams col-

lected data along randomly- or systematically-located line transects, or recce walks; the
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latter followed the path of least resistance and focused on areas where bonobo signs were

found. Because bonobo nests and nest sites tend to be clustered, we reduced the effects of

spatial auto-correlation by aggregating the individual nest or nest-site locations to

100 9 100 m blocks (the same resolution as the environmental predictor layers). A block

containing one or more nests or nest sites was termed a nest block. Because groups of nests

tend to be located within 30 m or less (Mulavwa et al. 2010), this block size corresponded

well to the scale of nest groups, lowering the risk that a single nest group was split between

two blocks. We compiled data for 2,364 nest blocks throughout the bonobo range (Fig. 1).

Predictor variables

We collaboratively developed and evaluated a suite of environmental predictors relevant to

bonobos. MaxEnt allows for the incorporation of a diverse range of environmental pre-

dictor variables (hereafter referred to as ‘‘predictors’’ or ‘‘environmental layers’’) including

biotic, abiotic, and threat-based data. However, MaxEnt requires that data values exist for

each pixel across the entire modeled range. Certain data describing factors that influence

bonobo presence, such as detailed vegetation layers and understory information (including

bonobo forage species), are not classified and mapped for the bonobo range. This is due to

the vast size and extreme inaccessibility of the region, a history of highly localized

research effort, and the sheer logistical and economic challenges to ground truth remotely

sensed data in Central Africa.

To construct the model, we focused on two broad biotic predictors (percent forest and

presence of intact forest), select abiotic factors that may influence vegetation (and hence,

forage, such as precipitation and soil type), and measures of potential human pressure.

Environmental layers were assembled from a variety of sources with varying resolutions.

Fig. 1 A map of the bonobo range as defined for the purpose of this effort to model suitable conditions for
bonobos rangewide. All wild bonobos inhabit the area south of the Congo River, Democratic Republic of
Congo. Specific regions referred to in the text correspond to the boxes shown: a Maringa–Lopori–Wamba
Landscape (MLW), b Tshuapa–Lomami–Lualaba Landscape (TL2), c Salonga National Park (SNP), and
d Lac Tumba (LT), respectively
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We qualitatively assessed each predictor variable’s expected influence on bonobo occur-

rence (Table 1). We resampled the environmental layers to 100 m resolution in ArcGIS to

standardize the pixel size. The Africover data (FAO 2000) contained six landcover cate-

gories: agriculture, broadleaved rainforest, swamp rainforest, shrub, urban, and water.

Because we found that most nest blocks (99.9 %) were located in just two forest cover

types (broadleaved rainforest and swamp rainforest), we re-classified these data into a

single forest cover type. We then calculated percent forest on that cover type based on a

3 9 3 cell neighborhood of 100 m cells (0.09 km2) using FRAGSTATS 3.3 (McGarigal

et al. 2002). This neighborhood analysis addressed potential GPS error and decreased the

possibility of misclassification of any given cell. While bonobos nest in terra-firma forest

more often (Mohneke and Fruth 2008; Reinartz et al. 2008), we included swamp forest in

the percent-forest variable because Mulavwa et al. (2010) reported 13 % of nest groups in

swamp forest, thereby supporting suitability for nesting.

Calculation

MaxEnt (version 3.3.1) predicts relative suitability of conditions based on presence-only

data. It does not require known absences; instead, MaxEnt relies on random background

points to characterize the range and variation of values for each environmental layer across

the study area. Using the ‘‘species with data’’ (SWD) format and 10,000 random back-

ground points, MaxEnt compared the environmental values of nest blocks to the envi-

ronmental values observed throughout the bonobo range to predict probability of suitable

conditions in unsurveyed areas (Elith et al. 2010). It is noteworthy that MaxEnt performs

best with relatively broad sampling coverage within the area of interest (Phillips et al.

2009). Although there was clustering of nest locations where sampling intensity was high,

nest-block locations were well-distributed throughout the bonobo range (Fig. 1).

Recent research (Yackulic et al. 2013) highlighted common misconceptions when using

MaxEnt, noting the relevance of detection probability to model inference, the conse-

quences of using data with sample selection bias, and the importance of critically exam-

ining modeled relationships. We consider those concerns here. Although we do not have a

direct estimate of detection probability for all nests in our dataset, we have reason to expect

it to be high and not to vary substantially with environmental predictors. Hickey (2012)

estimated the probability of nest detection as 0.93 when there were a total of 4 observers

and found no support for variance in detection probability by forest type. Most, if not all,

nest data for the present study were collected with teams of C4 observers; therefore, for

this rangewide dataset, we believe that detection probability is unlikely to influence model

inference. However, using presence-only data can sometimes produce results that are

geographically biased to regions located near the presence points (Phillips 2008; Phillips

et al. 2009). This effect can be most pronounced if those areas are highly surveyed relative

to the full dataset (Phillips et al. 2009). To test for such bias, we ran iterative models

withholding nest-block locations and background points from specific regions to evaluate

how well each reduced-data model performed in the area of withheld data. This procedure

informally evaluated the sensitivity of the models to potential bias from highly sampled

sites and the ability of the models to predict into unsampled regions. Specifically, we tested

a succession of separate models, independently withholding nest data from each of the

following highly-sampled regions: Maringa–Lopori–Wamba (MLW), Tshuapa–Lomami–

Lualaba (TL2), and Salonga national park (SNP) (Fig. 1a–c, respectively). We also ran

another series of models that each used only the data from one intensively-sampled region
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at a time, plus a model that used only data from a lightly sampled area (39 nest blocks)

called Lac Tumba (LT) (Fig. 1d). These sensitivity tests allowed us to evaluate how well

models built with presence data from each region predicted other regions of known

occurrence, and whether the relative importance of different predictor variables changed

based on the region from which presence data originated.

We varied the suite of included environmental layers to test their predictive perfor-

mance and to refine their selection based on diagnostics (explained below). We rejected

predictors exhibiting too narrow a range of values because they added little discerning

capability to the models (e.g. certain datasets, such as soil type, were mapped at such

coarse resolution that only one value dominated the entire bonobo range). For each MaxEnt

analysis in the series, we used a random 70 % of the nest blocks as training data to build

the model and withheld 30 % to independently test model accuracy.

A common metric for evaluating the classification accuracy of MaxEnt models is the area

under the curve (AUC) of a receiver operating characteristic (ROC) plot (Phillips et al. 2006).

An AUC of 0.5 represents a prediction no better than random, whereas a theoretically perfect

prediction would approach an AUC of 1, with no errors of omission or commission. Omission

and commission error, or false-negative and false-positive prediction respectively, are used to

calculate sensitivity and specificity. Traditionally, a graph of the true positive rate (sensi-

tivity) on the y-axis and the false positive rate (1-specificity) on the x-axis gives the AUC.

MaxEnt, however, calculates the AUC using the fractional predicted area on the x-axis

(Phillips et al. 2006), resulting in a theoretical maximum equal to [1 - (predicted area/2)]

(Wiley et al. 2003). This adjustment accounts for the fact that the background points are not

true absences and therefore do not indicate false positives. Standard deviation of the test AUC

provides an estimate of significance (DeLong et al. 1988; Phillips 2006).

We also ran a jackknife analysis to determine the relative contribution of each environ-

mental predictor to the models’ performance. In this procedure, MaxEnt removed one pre-

dictor and ran the model once on the individual predictor and again on the remaining

predictors. Using this approach, MaxEnt calculated the difference in the training and test

gains of each predictor alone, the model without that predictor, and the full model with all

predictors included. Gain is closely related to deviance, a measure of goodness of fit used in

generalized additive and generalized linear models; it starts at 0 and increases asymptotically

during the model run (Phillips 2006). Training and test gains relate to training and test data,

respectively. High test gains reflect predictor variables that better predict locations not used to

build the model (test data). We removed environmental predictors that contributed negligibly

to prediction (low gains). To avoid multicollinearity, we calculated Pearson’s correlation

coefficient, r, and removed predictor variables that were strongly correlated (r C 0.49).

However, in order to assess model sensitivity to such removal and to determine the direction

and strength of relationships between nest blocks and removed correlated predictors, we ran a

series of models in which the retained predictor was substituted by the corresponding

removed predictor. For binary suitability maps, we selected the ‘‘maximum sensitivity plus

specificity’’ threshold because it balances omission and commission errors thereby gener-

ating neither overly cautious nor overly optimistic predictions regarding suitable conditions.

All other settings, including regularization, were left at default values.

Results

The final output of the MaxEnt model (Fig. 2) highlights locations most likely suitable for

bonobos based on the final model containing distance from agriculture, edge density,
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percent forest, and distance from river. The jackknife analyses showed that the first three of

these were the best predictors of bonobo nest presence (Table 2; Fig. 3). We included

distance from river in the final model because it increased model accuracy and was not

correlated with the other three predictors. Each of the predictors was threat-based except

percent forest. Distance from agriculture contributed most to the final model and to all

models with one region withheld, making it the most important predictor. In the final

model, approximately 28 % (156,211 km2) of the bonobo range was predicted suitable

based on the maximum test sensitivity plus specificity threshold (values greater than 0.3).

This cut-off value was 0.3, producing a maximum classification accuracy when values

greater than 0.3 were classified as suitable. Within the area of suitable conditions, about

46 % has had at least some level of survey effort and 27.5 % (42,979 km2) was located in

official protected areas. The majority of Iyondji Community Bonobo Reserve, Lomako–

Yokokala Faunal Reserve, SNP, and Kokolopori Bonobo Reserve were predicted suitable

(87, 86, 82 and 64 %, respectively) whereas less than 50 % each of Luo Scientific Reserve,

Sankuru Reserve, and Tumba–Lediima Reserve were predicted as suitable.

Predictor-exclusion rules rejected certain variables from the final model as follows. We

removed forest-loss variables because they contributed negligibly (training gains \0.05

each). Distance from agriculture and distance from roads were highly correlated (Pearson’s

r = 0.72), and therefore we removed the weaker predictor of the two, distance from roads.

Nevertheless, distance from roads was a strong predictor of bonobo nest occurrence, with

Fig. 2 Final rangewide map of suitable conditions for bonobos, based on locations of bonobo nest blocks
and the strongest non-correlated predictor variables using a maximum-entropy approach. The polygons
denote boundaries of official protected areas at the time of writing
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nests more likely to occur farther from roads. Model runs replacing distance from agri-

culture by distance from roads produced very similar results, with distance from roads

being the strongest predictor in the absence of distance from agriculture. Presence of intact

forest was negatively correlated with edge density (r = -0.55) and was removed, leaving

the variable with the highest test gain (edge density) as the only remaining forest pattern

metric. We removed soil and lithology due to minimal variation throughout the range.

Similarly, elevation and precipitation exhibited a narrow range of values, with 145–672 m

and 118–179 mm/month, respectively. With the selected settings (default feature types and

regularization), MaxEnt over-fit the model to these two variables, creating complex rela-

tionships that were not biologically defensible, so we omitted them.

Training and test AUCs (0.82 and 0.80, respectively) indicated strong prediction

accuracy for the final model. MaxEnt calculated the theoretical maximum test AUC

[1 - (predicted area/2)] of the data as 0.816. The small standard deviation (±0.007) of

the test AUC confirmed that model performance was significantly better than random

(AUC = 0.5). In addition, the series of models for which we iteratively removed data

from each highly-sampled region resulted in maps that still predicted the withheld

regions as likely suitable (not shown). This confirmed that the final model (1) predicted

suitable conditions beyond regions of known occurrence, (2) was robust to missing data

despite the absence of surveys in some areas, and (3) was not overly biased toward

predicting suitable conditions in close proximity to presence points. If the latter were

true, the withhold-one-region models would not have consistently predicted the missing

region as suitable.

The withhold-one-region models generally supported the final model, whereas models

built using region-specific nest blocks showed some noteworthy differences in terms of

both transferability and predictor variable importance. For comparison purposes, we

applied the final model’s threshold of 0.3 to all region-specific models (Fig. 4). The

models built with MLW-only (Fig. 1a) and SNP-only (Fig. 1c) data agreed most with the

final model (44.6 and 63.5 % spatial overlap, respectively). The SNP model predicted

similarly to the MLW model (overlapping 91 % of the MLW model), yet the SNP output

had larger areas of high suitability. The MLW model predicted 13 % of the range as

suitable while the SNP model predicted 18 % (the final rangewide model predicted 28 %

of the range as suitable). The TL2-only model was the most liberal, predicting nearly

44 % of the range as suitable. The LT-only model was the most dissimilar of the four

region-specific models; it predicted only 11 % of the range as suitable, and those

locations were nearly the spatial inverse of the final model’s prediction with only 8 %

spatial overlap.

Table 2 MaxEnt diagnostics for each predictor variable modeling the relative suitability of conditions for
bonobos rangewide using each predictor variable by itself

Predictor variable Training gain Test gain AUC

Distance from agriculture 0.58 0.50 0.77

Edge density 0.34 0.35 0.73

Percent forest 0.16 0.15 0.58

Distance from river 0.10 0.08 0.6

Gain is a measure of relative goodness-of-fit (Phillips 2006). An AUC of 1 would be perfect prediction
whereas 0.5 would be no better than random
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Of the four predictor variables, distance from agriculture had the highest test gain for all

models except the MLW-only model, for which edge density was higher. Edge density was

one of the top two predictors for all region-specific models except TL2, which was more

influenced by percent forest. Distance from river had test gains between 0.14 and 0.24 for

all region-specific models except the TL2 model, where it had a test gain of 0.06.

The response curves (Supplemental Fig. 1) show the relationship between each pre-

dictor and suitability of conditions for bonobos based on the final model. As expected,

distance from agriculture and distance from rivers were positively correlated with bonobo

occurrence, with nests more often occurring far from agriculture and rivers. Edge density

was negatively correlated with bonobo occurrence, suggesting that bonobos tend to nest in

areas of low edge density rather than in highly fragmented forests. Percent forest was a

broad-scale predictor, positively correlated with bonobo occurrence.

As described earlier, elevation was excluded from the final model; however, prior to

removal, it too served as a broad predictor suggesting that bonobos tend to occur above

approximately 400 m elevation. Few surveys occurred below 400 m elevation; this likely

caused a sampling bias that created this apparent elevational pattern. When elevation was

included in the model, the mapped output predicted large swaths of terra-firma forest in the

south-west and a smaller area in the north-west of the range as unsuitable. Yet, when

elevation was excluded from the model, the output depicted these same regions as suitable

(Supplemental Fig. 2). Based on our knowledge of bonobo ecology, we find no support for

this type of elevation-related limitation to their distribution given the presence of appro-

priate vegetation and absence of potential threats.

Fig. 3 Maps of the selected environmental variables used in the final model to predict relative suitability of
conditions for bonobos: a edge density (km/km2), b distance from river (km), c distance from agriculture
(km), and d percent-forest landcover. All maps are drawn at 100 m resolution
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Discussion

Results from our iterative modeling approach strongly suggest that threats associated with

human activity (forest fragmentation and proximity to agriculture, roads and rivers) affect

the bonobo distribution. Human impact has become the key predictor of the bonobo

rangewide distribution and overrides the importance of ecological conditions as measured

in this analysis. We view these predictors as indicators of hunting impact. Areas closer to

agriculture and roads are closer to human populations who tend to hunt in the surrounding

forest (Robinson 1996; Hart et al. 2008). Roads and navigable rivers provide human access

to areas that would otherwise likely be less vulnerable to hunting (Wilkie et al. 2000; Blake

et al. 2007). The higher number of nests occurring far from rivers could also be indicative

of proportionately higher use of terra-firma rather than seasonally inundated forests by

bonobos. This relationship and the importance of swamp forests for bonobo nesting need

further study. Edge density distills information on forest fragmentation occurring from

agriculture, logging, major rivers, and roads (all of which create edge) into a single metric

describing hunter accessibility. Very likely, it is poaching associated with these metrics

that is the single common threat influencing bonobo occurrence. However, at the regional/

local scale, there will be some exceptions due to cultural taboos against eating bonobos.

Such taboos are in a state of flux because of changing values associated with immigrant

populations (Fruth et al. 2008); therefore, poaching of bonobos may begin to occur in new

areas, further magnifying this threat.

Fig. 4 A comparison of suitable conditions for bonobos as predicted by four rangewide models differing in
their presence-only input data. Each was built from nest-block data limited to the following corresponding
regions a MLW-only, b TL2-only, c SNP-only, and d LT-only, Democratic Republic of Congo. Note the
similarity between a, c, and the final model (Fig. 2)
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MaxEnt proved an effective tool for developing a useful distribution model where

presence-only data were available. Other great ape modeling studies that benefited from

both presence and absence data (e.g. Wich et al. 2011; Stokes et al. 2010) applied more

traditional modeling methods like generalized linear models and generalized additive

models. Because our study compiled bonobo observations from numerous data providers,

absence data were not always available, and we recommend the use of iterative MaxEnt

modeling for similar efforts where presence-only data are used. For other ape species

threatened by hunting, a similar analysis could elucidate important patterns relating ape

occurrences to landscape metrics and hunter accessibility. However, the specific rela-

tionship between forest edge density and ape occurrence is likely to be case specific and

vary by species, habitat type, habitat condition, prevailing hunting and land-use patterns,

and effectiveness of law enforcement.

In the final model, threat-based variables were better predictors of suitability for

bonobos than were biotic and abiotic factors. However, this could be due to greater

availability of data describing human threats at the correct spatial scale than were available

for other biotic and abiotic factors. Because hunting persists throughout most of the bonobo

range, including in areas that are legally protected (Dupain and Van Elsacker 2001; Hart

et al. 2008), it is difficult to determine environmental variables that would predict suitable

conditions in the absence of hunting. Finer-scale analyses of relative hunting pressure are

recommended to further examine these effects. While distance from roads was not included

in the final model due to multicollinearity with distance from agriculture, it was in fact one

of the strongest predictors of bonobo nest occurrence (second only to its correlated vari-

able, distance from agriculture). As such, proximity to roads should also be considered an

important threat to bonobos. We recommend repeating this study’s approach when more

detailed biotic and abiotic data relevant to bonobos become available.

The first bonobo conservation action plan (Thompson-Handler et al. 1995) recognized

that very little was known about bonobos and outlined an expansive area that needed to be

surveyed to determine bonobo distribution, abundance and the environmental factors

influencing bonobo presence. Here, we show the results of a comprehensive compilation of

bonobo nest data collected since then, and offer a current rangewide bonobo distribution

model (Fig. 2) that can be used to inform future bonobo conservation actions and plans. A

similar approach of iterative modeling would likely prove useful to develop robust maps of

predicted distributions of other taxa and serve as a basis for associated conservation action

plans.

Due to spatially comprehensive data requirements, the model provided here does not

benefit from finer-resolution data nor more detailed understandings of local areas well-

known to particular researchers. Instead, this type of knowledge of bonobo occurrence can

be used in combination with the prediction map on a case-by-case basis. Future modeling

would benefit from higher resolution environmental data, particularly for vegetation.

When building predictive models, it is important to critically consider classification

accuracy (AUC). In some previous studies using MaxEnt (Phillips et al. 2009; Veloz

2009), small sample sizes of geographically clumped data produced inflated measures of

AUC, especially when projecting to large extents (Anderson and Gonzalez 2011). For such

studies, the data were biased by the characteristics found in those limited geographic areas,

yet high accuracies were reported (all AUCs [0.9 when extrapolating to areas C100 km

from known presences, VanDerWal et al. 2009). Suggestions for corrective action have

included restricting the geographic distribution of background points used by MaxEnt to

surveyed areas in order to match potential bias in the presence-only data (Phillips et al.

2009). Our sensitivity test of a model in which we used LT-only data (39 nest sites)
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underscored the caution needed when modeling large areas with small presence-only

datasets (Fig. 4d), because the LT-only output is implausible given the other known nest

locations throughout the range. In contrast, the strength of the full dataset used in our final

model is that the data are numerous ([2,000 nest blocks), points span the entire modeled

area, clusters of those points cover vast expanses, and surveyed regions represent a broad

portion of each predictor’s range of values. Due to these characteristics, we did not restrict

background points to surveyed areas but instead used 10,000 random points distributed

throughout the entire range. We interpret the test AUC (0.80) of this study to be biolog-

ically reasonable based on the input data and, after iterative modeling, find no evidence

that it is inflated. The high AUC demonstrates that the model exhibits high classification

accuracy and therefore is likely to be useful for predicting areas of relative suitability.

The final model predicted numerous unsampled areas as likely suitable for bonobos,

suggesting that it is not overly biased to vicinities near presence points. The succession of

test models built by sequentially removing presence data from each highly-sampled region

(i.e., MLW, TL2 and SNP) demonstrated high spatial overlap with each other and with the

final model. Such agreement further increased our confidence in the model’s portrayal of

suitable conditions for bonobos. Finally, our series of test models built using just one

highly-sampled region at a time confirmed that the full set of compiled presence data

sufficiently portrayed the range of conditions (described by the predictors) that bonobos

have generally tolerated, given that humans are part of the landscape. This novel method of

addressing survey bias, a common problem in species distribution modeling, could be

applied to other studies, particularly in order to assist the development of conservation

plans for other great apes.

However, all models are simplified interpretations of the real world with inherent error.

The model may highlight areas as suitable that, in the field, contain little or no evidence of

bonobos. Reasons why such areas might not harbor bonobos could include: recent hunting,

biotic interactions, existence of conditions outside the range of model training (e.g. an

important predictor variable may be missing), or simply that bonobos have not moved into

that area, but could in the future. There were both advantages and disadvantages to using

bonobo nest data collected over a span of seven years. Strengths were that more areas

could be surveyed over the longer duration and the likelihood of detecting bonobo nests

was improved in areas where repeat surveys occurred. Therefore, the study was not merely

a snapshot of bonobo presence, but instead considered their presence over a longer time

period. A potential drawback to basing the model on this extended data collection period,

however, was that it may overestimate suitability in areas where bonobo populations have

since declined. Another limitation of the model was that predictor variables were restricted

to those for which spatially explicit data existed across the entire range, which constrained

our ability to test a wide range of environmental predictors. Moreover, there was uncer-

tainty regarding the best way to compute the percent-forest variable; we could define forest

as terra-firma forest alone, or we could include both swamp forest and terra-firma forest in

the definition. There is evidence that, in addition to terra-firma rainforest, bonobos do nest

in swamp forests (Mohneke and Fruth 2008; Reinartz et al. 2008; Mulavwa et al. 2010) at a

higher proportion than indicated by the rangewide dataset. We concluded that swamp

forest is underrepresented in survey effort, partially due to its sampling difficulty, and

therefore included it in our computation of percent forest, thereby removing the influence

of this potential survey bias on the MaxEnt algorithm.

The iterative MaxEnt modeling approach identified the most important factors deter-

mining the current bonobo distribution. Distance from agriculture was the strongest pre-

dictor of bonobo presence, with suitability increasing farther from agricultural areas.

3100 Biodivers Conserv (2013) 22:3085–3104

123



Furthermore, the region-specific models revealed local exceptions. In MLW, edge density

best predicted suitable conditions for bonobos whereas in TL2 percent-forest predicted

better than edge density. These outcomes were likely explained by the difference in the

range of values represented for each predictor within each region. Despite such local

patterns, the MLW-only, SNP-only, and TL2-only models exhibited high spatial agreement

with each other and with the final model. By contrast, only the LT data produced an

anomalous and demonstrably inaccurate rangewide model. While LT nests did occur near

agriculture and at intermediate edge density values, these represented the extreme values

for bonobo nest blocks and were not indicative of the rangewide relationship between nest

blocks and these variables. These results demonstrated both the geographic variation of

factors determining bonobo presence, and the importance of using well-distributed pre-

sence-only data when extrapolating to broad areas across the entire range.

The final suitability map provides a necessary foundation for developing sound

actions that are needed to maintain viable bonobo populations. For example, the map can

be used to spatially prioritize regions with highest suitability in order to concentrate

conservation effort therein. Further, the map identifies certain unsurveyed areas as

potentially suitable that may be important for bonobo conservation. In fact, at least 54 %

of area predicted suitable has yet to be surveyed. Conducting additional bonobo surveys

in these areas will be especially important as such areas may either currently harbour

unsurveyed bonobo populations or support a natural expansion of the current bonobo

distribution. Additionally, because this distribution model does not predict density of

bonobos, continued monitoring of known populations remains necessary to better assess

bonobo abundance.

Here, the best predictors (distance from agriculture and edge density) are both effects of

human activity, representing habitat loss in addition to hunter accessibility. Others have

noted the importance of habitat loss, fragmentation and shape of habitat patches, and

distance from humans to primate populations (Arroyo-Rodriguez et al. 2008). Therefore,

where possible, we recommend any future agricultural, logging or infrastructure devel-

opment concentrate in areas of least suitability and avoid areas of high suitability. Overall,

we urge that priority actions focus on reducing bonobo hunting mortality. Concrete

activities to achieve this goal that have proven useful in other regions may also be

applicable to bonobos, e.g., increasing the effectiveness of law enforcement by establishing

links to ecological monitoring programs (N’Goran et al. 2012) or improving protected area

effectiveness by creating zones of increased wildlife protection through long-term presence

of research and tourism (Campbell et al. 2011; Tranquilli et al. 2012). We hope that our

analysis will contribute significantly to the development of these and other land-use

management plans aimed at protecting highly suitable areas, reducing threats to bonobos,

and promoting conservation and sustainable natural resource management throughout the

bonobo range.
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Hunting of Sumatran orang-utans and its importance in determining distribution and density. Biol
Conserv 146:163–169

Wiley EO, McNyset KM, Peterson AT, Robins CR, Stewart AM (2003) Niche modeling and geographic
range predictions in the marine environment using a machine-learning algorithm. Oceanography
16:120–127

Wilkie DS, Morelli GA, Shaw E, Rotberg F, Auzel P (2000) Roads, development and conservation in the
Congo basin. Conserv Biol 14:1614–1622

WRI (2010) Interactive forest atlas for Democratic Republic of Congo (Atlas forestier interactif de la
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